

OPTISWIRL 5080 Руководство по эксплуатации

Вихревой расходомер для высокотемпературных применений

Все права сохранены. Запрещается воспроизведение настоящего документа, или любой его части, без предварительного письменного разрешения KROHNE Messtechnik GmbH.

Подлежит изменениям без предварительного уведомления.

Авторское право 2021 принадлежит KROHNE Messtechnik GmbH - Ludwig-Krohne-Str. 5 - 47058 г. Дуйсбург (Германия)

6

12

16

1 Правила техники безопасности

	0
1.1 Использование по назначению	6
1.2 Сертификаты	7
1.3 Указания изготовителя по технике безопасности	8
1.3.1 Авторское право и защита информации	
1.3.2 Заявление об ограничении ответственности	8
1.3.3 Ответственность за качество изделия и гарантийные обязательства	9
1.3.4 Информация по документации	9
1.3.5 Используемые предупреждающие знаки и графические обозначения	10
1.4 Указания по безопасности для обслуживающего персонала	11

2 Описание прибора

2.1 Комплект поставки	. 12
2.2 Версии устройства	. 12
2.2.1 Приборы фланцевого исполнения	13
2.2.2 Приборы сэндвич-исполнения	14
2.3 Заводская табличка	. 14

3 Монтаж

3.1 Общие примечания и распаковка 16 3.6 Минимальные прямые участки на выходе...... 24 3.9 Поворот корпуса преобразователя сигналов 31

4 Электрический монтаж

4.1 Указания по технике безопасности	
4.2 Электрическая изоляция электроники в корпусе	компактного исполнения
4.3 Электрическая изоляция электроники в корпусе	раздельного исполнения
4.3.1 Подготовка сигнального кабеля	
4.3.2 Подключение сигнального кабеля	
4.3.3 Доступ к полевым клеммам расходомера	
4.3.4 Идентификация на полевых клеммах	
4.4 Подключение расходомера	
4.4.1 Подключение расходомера к контуру управления	
4.4.2 Схема соединения расходомера с импульсным в	ыходом
4.5 Степень пылевлагозашиты	

5 Эксплуатация

5.1 Элементы индикации и управления	43
5.2 Основные принципы работы	
5.2.1 Пароль	
5.2.2 Редактирование чисел и строк	
5.2.3 Заводские настройки по умолчанию	
5.3 Использование дерева меню	
5.3.1 Навигация по меню	
5.3.2 Верхний уровень меню	
5.3.3 Режим измерения	
5.3.4 Режим настройки счетчиков	
5.3.5 Режим статуса	
5.3.6 Режим просмотра	51
5.3.7 Режим настройки	51
5.4 Описание режима настройки	54
5.4.1 Настройка параметров измеряемой среды	
5.4.2 Настройка параметров расхода	
5.4.3 Настройка параметров наладки	
5.4.4 Настройка параметров счетчиков	60
5.4.5 Настройка параметров выходного сигнала	60
5.4.6 Настройка параметров трубопровода	61
5.4.7 Установка параметров тега	62
5.4.8 Установка параметров первичного преобразователя	
5.4.9 Изменение пароля	63
5.5 Описание режима "Калибровка/Тестирование"	63
5.5.1 Калибровка	64
5.5.2 Тестирование	64
5.6 Сообщения об ошибках	65
5.7 Настройка перемычки защиты от записи	
5.8 Работа с HART-коммуникатором	
5.8.1 Описание параметров	67
5.8.2 Интерактивное меню	74

79

6 Техническое обслуживание

6.2 Доступность запасных частеи 6.2 Доступность сервисного обслуживания	
6.3 Возврат прибора изготовителю	
6.3.1 Общая информация	79
6.3.2 Образец бланка, прилагаемого к прибору в случае возврата (для снятия копии)	80
6.4 Утилизация	80
	0.4
/ Технические характеристики	81

7.1 Принцип действия	
7.2 Технические характеристики	
7.3 Габаритные размеры и вес	89
7.3.1 Габаритные размеры прибора фланцевого исполнения	
7.3.2 Размеры сэндвич-исполнения	
7.3.3 Bec	
7.4 Номинальные значения давления и температуры для фланцев	101
Примечания	105

8 Примечания

1.1 Использование по назначению

Осторожно!

Полная ответственность за использование измерительных приборов в соответствии с назначением и условиями применения, с учетом коррозионной устойчивости материалов по отношению к среде измерения, лежит исключительно на пользователе.

Информация!

Данное устройство относится к группе 1, классу А, как указано в стандарте CISPR11. Оно предназначено для промышленного использования. В других эксплуатационных условиях не исключено возникновение сложностей при обеспечении электромагнитной совместимости вследствие кондуктивных и излучаемых помех.

Информация!

Производитель не несет ответственности за неисправность, которая является результатом ненадлежащего использования или применения изделия не по назначению.

Вихревые расходомеры предназначены для измерения расхода газов, паров и жидкостей.

- Первичные преобразователи выполнены из нержавеющей стали 316 или 304 или никелевого сплава CX2MW (аналог Hastelloy[®] C).
- При проектировании необходимо принять во внимание данные, приведённые в таблицах коррозионной устойчивости.
- Находящиеся под давлением части сконструированы и рассчитаны для стационарного режима работы с учётом максимального давления и температуры.
- Соблюдайте указанные на заводской табличке данные по максимально допустимым данным.
- Внешние силы и моменты, обусловленные, например, напряжениями труб, при этом не были учтены.

1.2 Сертификаты

CE

Устройство соответствует нормативным требованиям следующих директив ЕС:

- Директива по оборудованию, работающему под давлением
- Директива по ЭМС
- Для устройств, эксплуатируемых во взрывоопасных зонах: директива ATEX

а также

• Рекомендации NAMUR NE 21 и NE 43

Производитель удостоверяет успешно проведённые испытания устройства нанесением маркировки СЕ.

Декларация соответствия EU по рассматриваемым директивам и соответствующим гармонизированным стандартам может быть загружена с веб-сайта компании.

Опасность!

На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения.

1.3 Указания изготовителя по технике безопасности

1.3.1 Авторское право и защита информации

Данные, представленные в настоящем документе, подбирались с большой тщательностью. Тем не менее, мы не гарантируем, что его информационное наполнение не содержит ошибок, является полным или актуальным.

Информационное наполнение и иные материалы в составе настоящего документа являются объектами авторского права. Участие третьих лиц также признается таковым. Воспроизведение, переработка, распространение и иное использование в любых целях сверх того, что разрешено авторским правом, требует письменного разрешения соответствующего автора и/или производителя.

Изготовитель во всех случаях старается соблюсти авторское право других лиц и опираться на работы, созданные внутри компании, либо на доступные для общего пользования труды, не охраняемые авторским правом.

Подборка персональных данных (таких как названия, фактические адреса, либо адреса электронной почты) в документации производителя по возможности всегда осуществляется на добровольной основе. Исходя из целесообразности, мы при любых обстоятельствах стараемся использовать продукты и услуги без предоставления каких-либо персональных данных.

Подчеркиваем, что передача данных по сети Интернет (например, при взаимодействии посредством электронной почты), может подразумевать бреши в системе безопасности. Обеспечение полноценной защиты таких данных от несанкционированного доступа третьих лиц не всегда представляется возможным.

Настоящим строго воспрещается использование контактных данных, публикуемых в рамках наших обязательств печатать выходные данные, в целях отправки нам любой информации рекламного или информационного характера, если таковая не была запрошена нами напрямую.

1.3.2 Заявление об ограничении ответственности

Изготовитель не несет ответственность за всякий ущерб любого рода, возникший в результате использования его изделия, включая прямые, косвенные, случайные, присуждаемые в порядке наказания и последующие убытки, но не ограничиваясь ими.

Настоящее заявление об ограничении ответственности не применяется в случае, если производитель действовал намеренно, либо проявил грубую небрежность. В случае, если любая применяемая правовая норма не допускает таких ограничений по подразумеваемым гарантиям, либо не предусматривает исключения ограничения определенного ущерба, Вы можете, если данная правовая норма распространяется на Вас, не подпадать под действие некоторых или всех перечисленных выше заявлений об ограничении ответственности, исключений или ограничений.

На любой приобретенный у изготовителя продукт распространяются гарантийные обязательства согласно соответствующей документации на изделие, а также положениям и условиям нашего договора о купле-продаже.

Производитель оставляет за собой право вносить в содержание своих документов, в том числе и в настоящее заявление об ограничении ответственности, изменения любого рода, в любой момент времени, на любых основаниях, без предварительного уведомления и в любом случае не несет никакой ответственности за возможные последствия таких изменений.

1.3.3 Ответственность за качество изделия и гарантийные обязательства

Ответственность за надлежащее использование устройства в соответствии с его функциональным назначением возлагается на пользователя. Изготовитель не признает никакой ответственности за последствия ненадлежащего применения со стороны пользователя. Некорректный монтаж и эксплуатация устройств (систем) с нарушением установленных режимов влечет за собой утрату гарантии. При этом действуют соответствующие «Типовые положения и условия», которые формируют основу договора купли-продажи.

1.3.4 Информация по документации

Во избежание травмирования пользователя или вывода прибора из строя следует в обязательном порядке прочесть содержащиеся в настоящем документе материалы и соблюдать действующие государственные стандарты, требования, нормы и правила техники безопасности, в том числе и по предупреждению несчастных случаев.

Если настоящий документ составлен на иностранном языке, при возникновении сложностей с пониманием данного текста, мы рекомендуем обратиться за содействием в ближайшее региональное представительство. Производитель не несет ответственности за любой ущерб или вред, вызванный некорректной интерпретацией положений настоящего документа.

Настоящий документ предоставляется с целью оказания содействия в организации такого эксплуатационного режима, который позволит безопасно и эффективно применять данный прибор. Кроме того, в документе приводятся требующие особого внимания аспекты и предупредительные меры по обеспечению безопасности, которые представлены ниже в виде графических символовпиктограмм.

1.3.5 Используемые предупреждающие знаки и графические обозначения

Предупреждения относительно безопасного пользования обозначаются следующими символами.

Опасность!

Настоящая информация относится к непосредственным рискам при работе с электричеством.

Опасность!

Данный предупреждающий знак относится к непосредственной опасности получения ожогов в результате контакта с источником тепла или с горячими поверхностями.

Опасность!

Данный предупреждающий знак относится к непосредственным рискам, возникающим при эксплуатации этого измерительного прибора во взрывоопасных зонах.

Опасность!

В обязательном порядке соблюдайте данные предупреждения. Даже частичное несоблюдение этого предупреждающего знака может повлечь за собой серьезный ущерб здоровью вплоть до летального исхода. Кроме того, имеет место риск возникновения серьезных неисправностей самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Внимание!

Пренебрежение данным предостережением относительно безопасного пользования и даже частичное его несоблюдение представляют серьезную опасность для здоровья. Кроме того, имеет место риск возникновения серьезных неисправностей самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Осторожно!

Несоблюдение настоящих указаний может повлечь за собой серьезные неисправности самого измерительного прибора, либо элементов технических сооружений и технологического оборудования пользователя.

Информация!

Данные указания содержат важную информацию по погрузочно-разгрузочным работам, переноске и обращению с прибором.

Официальное уведомление!

Настоящее примечание содержит информацию по законодательно установленным предписаниям и стандартам.

• ОБРАЩЕНИЕ С ПРИБОРОМ

Данный символ обозначает все указания к действиям и операциям, которые пользователю надлежит выполнять в определенной предписанной последовательности.

РЕЗУЛЬТАТ

Настоящий символ относится ко всем важным последствиям совершенных ранее действий и операций.

1.4 Указания по безопасности для обслуживающего персонала

Внимание!

Как правило, допускается монтировать, вводить в действие, эксплуатировать и обслуживать производимые изготовителем измерительные устройства исключительно силами уполномоченного на эти виды работ персонала, прошедшего соответствующее обучение. Настоящий документ предоставляется с целью оказания содействия в организации такого эксплуатационного режима, который позволит безопасно и эффективно применять данный прибор.

2.1 Комплект поставки

Информация!

Тщательно обследуйте картонную тару на наличие повреждений или признаков небрежного обращения. Проинформируйте о повреждениях перевозчика и региональный офис фирмыизготовителя.

Информация!

Сверьтесь с упаковочной ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Информация!

Обратите внимание на шильду прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на шильде.

Комплект поставки включает в себя:

- Расходомер в исполнении, соответствующем заказу
- Документация на изделие
- Прокладка для шестигранной гайки (только для сэндвич-исполнения)

2.2 Версии устройства

Доступные стандартные исполнения:

- Преобразователь сигналов (компактное или раздельное исполнение)
- Первичный преобразователь в фланцевом исполнении (компактное или раздельное исполнение)
- Первичный преобразователь в сэндвич-исполнении (компактное или раздельное исполнение)

Доступные опциональные исполнения:

• Сдвоенный прибор фланцевого и сэндвич-исполнения (дублирование измерений)

2.2.1 Приборы фланцевого исполнения

Рисунок 2-1: Примеры приборов фланцевого исполнения (компактное исполнение)

① Одинарное компактное исполнение (стандартное исполнение)

② Сдвоенное компактное исполнение (опция)

Рисунок 2-2: Примеры приборов фланцевого исполнения (раздельное исполнение)

① Одинрный первичный преобразователь раздельного исполнения (стандарт)

🗵 Сдвоенный первичный преобразователь раздельного исполнения (опция)

③ Преобразователь сигналов раздельного исполнения и монтажная стойка

2.2.2 Приборы сэндвич-исполнения

Рисунок 2-3: Примеры приборов сэндвич-исполнения

- ① Компактное исполнение с присоединением типа "сэндвич"
- 2 Первичный преобразователь раздельного исполнения
- ③ Преобразователь сигналов раздельного исполнения и монтажная стойка

2.3 Заводская табличка

Информация!

Проверьте соответствие данных на заводской табличке прибора данным, указанным в заказе. Проверьте, правильное ли напряжение питания указано на заводской табличке.

Рисунок 2-4: Пример типовой таблички для прибора компактного исполнения

- ① Логотип и адрес фирмы-изготовителя
- ② Номер модели
- ③ Идентификационный номер
- 🖇 Характеристики цепи питания
- ⑤ Макс. рабочее давление и макс. рабочая температура
- ⑥ Информация от уполномоченного органа, при необходимости
- 🕐 Класс защиты корпуса
- 🛞 Данные по расходу и сообщение по кабельным вводам
- (9) К-фактор и номер технологической позиции Заказчика

Рисунок 2-5: Пример заводской таблички для раздельного исполнения

- ① Логотип и адрес фирмы-изготовителя
- ② Номер модели
- Э Идентификационный номер
- Зарактеристики цепи питания
- 5 Макс. рабочее давление и макс. рабочая температура
- ⑥ Обозначение изделия
- 곗 Класс защиты корпуса
- ⑧ Данные по расходу и сообщение по кабельным вводам
- ⑨ К-фактор и номер технологической позиции Заказчика

3.1 Общие примечания и распаковка

Данные расходомеры должны быть установлены обученным персоналом с соблюдением всех требований к установке, таким как требования к монтажу во взрывоопасных зонах, требования к электрическим подключениям и требования к механическим соединениям трубопровода. Для обеспечения корректной работы без ухудшения качества, корпус преобразователя сигналов должен быть заземлен.

Информация!

Сверьтесь с упаковочной ведомостью на предмет получения груза в полной комплектации в соответствии с заказанными позициями.

Информация!

Расходомеры сэндвич-исполнения (в зависимости от класса давления используемого фланцевого присоединения) могут быть оснащены центровочными распорными штифтами, включенными в комплект поставки. Не выбрасывайте распорные штифты. Их необходимо использовать для корректной установки расходомера.

Расходомер имеет прочную конструкцию, но он является частью откалиброванной прецизионной системы, поэтому он требует соответствующего обращения.

Расходомеры с выносной электроникой имеют кабель, соединяющий клеммную коробку расходомера и корпус электроники. Не допускайте, чтобы соединительный кабель поддерживал вес корпуса расходомера или корпуса электроники.

Осторожно извлеките корпус расходомера из транспортной коробки, чтобы не уронить или не подвергнуть его иным ударам, особенно по фланцам или поверхностям сэндвич-конструкции. Никогда не прокладывайте что-либо через корпус расходомера для подъема, так как это может привести к повреждению устройства.

После удаления корпуса расходомера из картонной транспортной тары, проверьте его на наличие повреждений. При обнаружении дефектов, уведомите курьера и запросите заключение об инспекции. Курьер должен отдать Вам подписанную копию заключения. Калибровочный сертификат и другую документацию, поставляемую в комплекте с расходомером, необходимо отложить для использования в будущем. Установите на место все фланцевые крышки или защитный материал для защиты расходомера до его установки.

Упаковочный материал должен быть утилизирован в соответствии с локальными требованиями. Все упаковочные материалы являются не опасными, поэтому подлежат стандартной утилизации.

3.2 Хранение

- Храните устройство в сухом, защищённом от пыли месте.
- Избегайте длительного воздействия на прибор прямых солнечных лучей.
- Храните устройство в оригинальной упаковке.
- Для стандартных приборов допустимая температура хранения составляет от -40 до +85°С / от -40 до +185°F.

3.3 Транспортировка

- Для транспортировки используйте стропы, которые следует располагать вокруг обоих технологических подсоединений.
- При транспортировке нельзя поднимать измерительные приборы за корпус преобразователя сигналов.
- Не используйте транспортировочные цепи, так как они могут повредить корпус.

Осторожно!

Имеется опасность повреждения по причине неустойчивости прибора. Центр тяжести прибора часто находится выше точки подвеса строп.

При транспортировке избегайте ненамеренного соскальзывания или вращения измерительного прибора.

3.4 Условия монтажа

Информация!

Для корректного измерения объёмного расхода измерительному прибору необходим полностью заполненный трубопровод и явно выраженный профиль потока.

Осторожно!

Любые вибрации будут оказывать негативное воздействие на результат измерения. В связи с этим необходимо принять соответствующие меры для предотвращения возникновения вибраций в трубопроводе.

Осторожно!

Перед тем как установить прибор, необходимо выполнить следующие шаги:

- Номинальный диаметр присоединительного фланца трубопровода = номинальный диаметр фланца измерительной трубы прибора!
- Используйте фланцы с гладкими отверстиями, например, приварные воротниковые фланцы.
- Тщательно центрируйте отверстия ответного фланца трубопровода и присоединительного фланца прибора.
- Проверьте устойчивость материала уплотнительной прокладки к измеряемой среде.
- Убедитесь, что уплотнительные прокладки расположены по центру. Фланцевые уплотнения не должны заступать внутрь трубопровода.
- Фланцы должны быть соосными.
- Непосредственный входной участок не должен иметь никаких изгибов трубы, клапанов, задвижек или других внутренних элементов.
- Никогда не устанавливайте измерительный прибор непосредственно позади поршневых компрессоров или ротационно-поршневых счётчиков.
- Под воздействием излучаемого тепла (например, при нахождении на солнце) не допускается нагрев поверхности корпуса блока электроники выше максимально предусмотренной для устройства температуры окружающей среды. Для предотвращения повреждения устройства в результате воздействия теплового излучения при необходимости следует установить специальную защиту (например, солнцезащитный козырек).
- Не прокладывайте сигнальные кабели в непосредственной близости от кабелей питания.
- При температуре измеряемой или окружающей среды >+65°С / +149°F необходимо использовать соединительный кабель и кабельные вводы, рассчитанные на минимальную рабочую температуру +80°С / +176°F.

Информация!

При опасности возникновения гидравлических ударов в паровых сетях необходимо установить соответствующие сепараторы конденсата. При опасности возникновения кавитации необходимо принять соответствующие меры для её предотвращения.

3.4.1 Установка при измерении жидкостей

Рисунок 3-1: Рекомендуемая установка

- При монтаже прибора на нисходящий трубопровод необходимо сразу за прибором установить восходящий участок трубопровода
- (2) Монтаж прибора на наклонном восходящем трубопроводе
- ③ Монтаж прибора в вертикальном восходящем трубопроводе
- ④ Монтаж прибора в нисходящий изгиб трубопровода

Рисунок 3-2: Нерекомендуемая установка

- ① Монтаж прибора на нисходящем трубопроводе
- 2 Монтаж прибора вблизи свободного слива.
- Э Монтаж прибора в восходящее колено трубы ввиду риска образования пузырьков газа.

Осторожно!

- При установке прибора на нисходящем () или восходящем участке трубопровода вблизи свободного слива (2), существует опасность частичного заполнения трубопровода, результатом которого являются некорректные измерения.
- При установке прибора в восходящее колено трубы (3), существует опасность образования пузырьков газа.

Пузырьки газа могут стать причиной пульсаций давления и привести к ошибочным измерениям.

3.4.2 Монтаж при измерении пара и газа

Рисунок 3-3: Рекомендуемая установка

- ① Установка прибора в восходящее колено трубы
- При монтаже прибора на нисходящий участок трубопровода необходимо сразу за прибором установить нисходящий участок трубопровода

Рисунок 3-4: Нерекомендуемая установка

- 1 Нисходящее колено трубы
- 2 Конденсат

Осторожно!

Монтаж прибора на нисходящем участке трубы: существует опасность образования конденсата.

Конденсат может привести к кавитации и ошибочным измерениям. При определённых обстоятельствах прибор может быть повреждён и возможна утечка измеряемого продукта.

3.4.3 Монтажное положение относительно направлению потока

Положение расходомера		Жидкость	Газ	Насыщенный пар	Перегретый пар
	Корпус расположен вверху, отсечной клапан не используется	Да ①	Да	Нет	Да ②
	Корпус расположен вверху, отсечной клапан используется	Нет (5)	Да	Нет	Да ②
	Корпус расположен под трубой	Да (Э), Ф), (6)	Да ④	Да	Да ②
	Корпус расположен сбоку трубы	Да	Да	Нет	Да ②
	Корпус расположен сбоку и под трубой	Да (б)	Да	Нет	Да ②
	Вертикальная труба, восходящий поток	Да	Да	Нет	Да ②
	Вертикальная труба, нисходящий поток	Да ⑦	Да	Нет	Да (2)

Таблица 3-1: Монтажное положение относительно направления потока

① Возможность временной ошибки запуска из-за захваченного воздуха.

(2) Требуется надежная изоляция.

Э Наилучший способ - недопущение возникновения ошибок при запуске.

④ Рекомендуется только для чистых измерительных сред.

⑤ Не рекомендуется для жидкостей с установленным отсечным клапаном.

(6) Предпочтительно использовать для жидкостей с отсечным клапаном.

🕐 Не рекомендуется; необходимо поддерживать трубу полностью заполненной.

3.4.4 Трубопроводы с регулирующим клапаном

Информация!

Для обеспечения бесперебойного и корректного измерения изготовитель рекомендует не устанавливать измерительный прибор за регулирующим клапаном. Имеется опасность образования завихрений, которые могут оказать негативное воздействие на результат измерения.

Рисунок 3-5: Трубопроводы с регулирующим клапаном

① Рекомендуется монтаж прибора перед регулирующим клапаном на расстоянии ≥ 5 DN

🗵 Запрещается монтаж прибора непосредственно после регулирующих клапанов по причине образования завихрений.

3.5 Минимальные прямые участки на входе

Рисунок 3-6: Минимальные прямые участки на входе

- Общий прямой участок на входе при отсутствии помех для потока ≥ 15 DN
 После регулирующего клапана ≥ 50 DN
 После сужения трубопровода ≥ 20 DN

- ④ После одинарного отвода 90° ≥ 20 DN
- ⑤ После двойного отвода 2х90° ≥ 30 DN
- ⑥ После двойного пространственного отвода 2х90° ≥ 40 DN
- ⑦ Прямой участок на выходе: > 5 DN

3.6 Минимальные прямые участки на выходе

Рисунок 3-7: Минимальные прямые участки на выходе

① До расширений, изгибов трубопроводов, регулирующих клапанов и т.д. ≥ 5 DN

② До точек измерений ≥ 5 DN

Информация!

Внутренняя сторона трубопровода на измерительных позициях не должна иметь острых кромок и элементов, создающих возмущения потока. Измерительный прибор имеет встроенный температурный датчик. Расстояние от внешних позиций измерения температуры должно быть ≥ 5 DN. Используйте как можно более короткие первичные преобразователи, чтобы избежать возмущений профиля потока.

3.7 Установка

3.7.1 Общие указания по монтажу

Осторожно!

К монтажно-сборочным, пусконаладочным работам и к техническому обслуживанию прибора допускается исключительно персонал, прошедший соответствующее обучение. Региональные правила и нормы по охране труда подлежат неукоснительному соблюдению.

Перед тем как установить прибор, необходимо выполнить следующие шаги:

- Убедитесь, что диаметр уплотнительных прокладок совпадает с диаметром трубопроводов.
- Обратите внимание на правильное направление потока в приборе. Оно указывается с помощью стрелки на корпусе первичного преобразователя.
- На позициях измерения с большими колебаниями температуры необходимо монтировать расходомеры при помощи специальных шпилек (DIN 2510).
- Шпильки или болты с гайками в комплект поставки не входят.
- Необходимо удостовериться, что ответные фланцы расположены соосно и параллельно.
- При подготовке измерительной позиции следует учесть точную монтажную длину измерительного прибора.

Рисунок 3-8: Подготовка позиции измерения

① Монтажная длина измерительного прибора + толщина уплотнительных прокладок

Осторожно!

Внутренние диаметры трубопроводов, первичного преобразователя и уплотнительных прокладок должны совпадать. Уплотнительные прокладки не должны заступать в поток.

Рисунок 3-9: Внутренний диаметр

- ① Внутренний диаметр присоединительного трубопровода
- ② Внутренний диаметр фланца и уплотнительной прокладки
- ③ Внутренний диаметр первичного преобразователя

3.7.2 Монтаж приборов сэндвич-исполнения

Информация!

При удаленной установке электроники, корпус расходомера следует устанавливать таким образом, чтобы был доступ к клеммной коробке.

Для оптимальной работы, расходомер сэндвич-исполнения должен быть отцентрован относительно прилегающей трубы. Обычно для этого требуются центрирующие приспособления, поставляемые в комплекте с расходомером.

Рисунок 3-10: Центрирование расходомера при помощи распорных штифтов

- 1 Расходомер
- Уплотнительная прокладка
- ③ Приспособление для юстировки шестигранной гайки
- ④ 2 распорных штифта для шестигранных гаек для каждой стороны
- Установите первую шпильку в одно из нижних отверстий фланца, расположенного вниз по потоку, протяните ее через распорные штифты шестигранных гаек, а затем через фланец, расположенный вверх по потоку. Установите гайки с обоих сторон шпильки, но не затягивайте их.
- Используя оставшиеся распорные штифты для шестигранных гаек, повторите первый шаг для нижнего отверстия относительно первого.
- Установите расходомер между фланцев. Затем для центровки расходомера, поверните распорные штифты на необходимую толщину.

Информация!

За счет вращения распорных штифтов для шестигранных гаек, можно отцентровать расходомер для фланцев любого типа.

- Необходимо использовать уплотнительные прокладки, поставку осуществляет пользователь. Выберите материал уплотнительной прокладки, совместимый с измеряемой средой.
- Установите уплотнительные прокладки между корпусом расходомера и прилежащими фланцами. Установите уплотнительные прокладки таким образом, чтобы внутренний диаметр каждой прокладки совпадал с внутренним диаметром расходомера и прилегающей трубы.

Осторожно!

Проверьте, чтобы внутренний диаметр уплотнительной прокладки был больше сечения измерительной трубы и трубопровода, а прокладки не выступали во входное и выходное отверстие трубопровода. Выступ в полость трубы может повлиять на работу устройства.

Информация!

При необходимости приварки фланцев к технологическому трубопроводу, защитите расходомер от сварочных брызг, так как это может повлиять на точность измерений. Во время сварки установите жесткий лист с обоих сторон расходомера. После окончания сварочных работ, удалите лист и установите уплотнительные фланцевые прокладки.

- Визуально осмотрите концентричность (центровку и выравнивание) ответных фланцев.
- Установите остальные шпильки и гайки и затяните гайки в соответствии с общими правилами затяжки (постепенная и переменная затяжка болтов).

Информация!

Если прилегающие фланцы смещены, выполните юстировку расходомера относительно фланца, расположенного **вверх по потоку**.

3 Монтаж

3.7.3 Монтаж приборов фланцевого исполнения

Информация!

При удаленной установке электроники, корпус расходомера следует устанавливать таким образом, чтобы был доступ к клеммной коробке.

Рисунок 3-11: Монтаж приборов фланцевого исполнения

1 Расходомер

- Э Уплотнительная прокладка
- Необходимо использовать уплотнительные прокладки, поставку осуществляет пользователь.
 Выберите материал уплотнительной прокладки, совместимый с технологической жидкостью.
- Установите уплотнительные прокладки между корпусом расходомера и прилежащими фланцами. Установите уплотнительные прокладки таким образом, чтобы внутренний диаметр каждой прокладки совпадал с внутренним диаметром расходомера и прилегающей трубы.

Осторожно!

- Проверьте, чтобы внутренний диаметр уплотнительной прокладки был больше сечения измерительной трубы и трубопровода, а прокладки не выступали во входное и выходное отверстие трубопровода. Выступ в полость трубы может повлиять на работу устройства.
- Уплотнительные прокладки не защищают фланцы от контакта с измеряемой средой.

Информация!

При установке новых фланцев на технологический трубопровод и использовании расходомера в качестве датчика для установки фланцев, защитите внутреннюю полость расходомера от сварочных брызг. Во время сварки установите жесткий лист с обоих сторон расходомера. После окончания сварочных работ, удалите лист и установите уплотнительные фланцевые прокладки. Удалите брызги с трубы и расходомера, так как они могут повлиять на точность измерений.

- Визуально осмотрите концентричность (центровку и выравнивание) ответных фланцев.
- Затяните гайки в соответствии с общими правилами затяжки (постепенная и переменная затяжка болтов).

3.7.4 Монтаж корпуса электроники раздельного исполнения

Целью использования электроники в корпусе раздельного исполнения является разделение корпуса расходомера и электроники.

Информация!

Материалы и инструменты для монтажно-сборочных работ не входят в комплект поставки. Используйте материалы и инструменты для монтажно-сборочных работ, соответствующие действующим правилам и нормам по охране труда.

Электроника в корпусе раздельного исполнения может быть установлена на вертикальной или горизонтальной трубе DN50 или 2" при помощи монтажной скобы или U-образного болта, включенного в комплект поставки. Для монтажа корпуса на горизонтальной трубе, поверните U-образный болт на 90° из положения, указанного на следующем рисунке.

Рисунок 3-12: Монтаж корпуса электроники раздельного исполнения

- 1 Контргайка
- 2 Корпус
- 3 Монтажная скоба4 U-образный болт
- 5 Кабель для подключения к клеммной коробке

Корпус можно установить на поверхность, прикрутив монтажную скобу к стене. Скобу проще прикрутить к стене без прикрепленного к ней корпуса. Выполните следующие действия:

- Удалите контргайку ① под скобой.
- Поднимите корпус (2), чтобы можно было протянуть кабель через отверстие в монтажной скобе (3).
- Отведите корпус в сторону и прикрепите монтажную скобу (3) с помощью U-образного болта (4) к стене.
- Выполните шаг 2 и 1 в обратном порядке.

3.8 Теплоизоляция

Рисунок 3-13: Монтаж теплоизоляции

- ① Крышка накладки
- 2 Крышка
- ③ Изоляция

Осторожно!

- Для применений с температурой измеряемой среды выше +160°С / +320°F рекомендуется изолировать трубопровод в соответствии с указаниями по изоляции.
- Изоляция недопустима за пределами крышки накладки.
- Температура в блоке электроники не должна превышать +80°C / +176°F.
- Не допускается размещать теплоизоляцию выше крепления опоры преобразователя сигналов.

Солнцезащитный козырёк

Рисунок 3-14: Рекомендации по установке

① Монтаж в горизонтальном положении

② Монтаж в вертикальном положении

Расходомер ДОЛЖЕН быть защищен от воздействия солнечных лучей.

3.9 Поворот корпуса преобразователя сигналов

Опасность!

Все работы с электроникой прибора должны проводить только прошедшие соответствующее обучение специалисты. Необходимо обязательно соблюдать региональные предписания по охране труда и технике безопасности.

Корпус расходомера (верхнюю часть) можно повернуть на один полный оборот против часовой стрелки, для возможности получения оптимального доступа к настройкам, дисплею или электрическим соединениям. Корпусы оснащены либо стопорным винтом, либо удерживающим зажимом, который предотвращает поворот корпуса за пределы безопасной глубины соединения резьбы корпуса/первичного преобразователя.

Рисунок 3-15: Поворот корпуса преобразователя сигналов

- ① Стопроный винт или удерживающий зажим
- ② Корпус
- ③ Пластина
- ④ Крышка

3.10 Поворот дисплея

Опасность!

Все работы с электроникой прибора должны проводить только прошедшие соответствующее обучение специалисты. Необходимо обязательно соблюдать региональные предписания по охране труда и технике безопасности.

Дисплей можно поворачивать внутри корпуса в любое из четырех положений с шагом 90°. Для этого ослабьте два невыпадающих винта, поверните дисплей в нужное положение и снова затяните винты.

Осторожно!

- НЕ поворачивайте дисплей более чем на 180° в любом положении. Эти действия могут повлечь повреждение соединительного кабеля.
- Во избежание защемления ленточного кабеля, уложите его в пространстве между дисплеем и модулем электроники. Перед затяжкой винтов убедитесь, что дисплей плотно прилегает к модулю.

3.11 Блокираторы крышки

Блокираторы крышки корпуса электроники стандартно поставляются с сертификатами. Для закрытия крышек, открутите установочный штифт примерно до 6 мм / 0,25", совместив отверстие на штифте с отверстием на корпусе. Установите герметизирующую проволоку через два отверстия, на концы проволоки наденьте уплотнение и обожмите его.

Рисунок 3-16: Положение блокираторов крышки

① Блокиратор крышки

4.1 Указания по технике безопасности

Опасность!

Проведение любых работ, связанных с электрическим монтажом оборудования, допускается только при отключенном электропитании. Обратите внимание на значения напряжения, приведенные на шильде прибора!

Опасность!

Соблюдайте действующие в стране нормы и правила работы и эксплуатации электроустановок!

Опасность!

На приборы, которые эксплуатируются во взрывоопасных зонах, распространяются дополнительные нормы безопасности. Обратитесь к документации на приборы взрывозащищённого исполнения.

Внимание!

Региональные правила и нормы по охране труда подлежат неукоснительному соблюдению. К любым видам работ с электрическими компонентами средства измерений допускаются исключительно специалисты, прошедшие соответствующее обучение.

Информация!

Обратите внимание на шильду прибора и убедитесь в том, что поставленный прибор соответствует заказанным спецификациям. Проверьте правильность напряжения питания, значение которого выбито на шильде.

4.2 Электрическая изоляция электроники в корпусе компактного исполнения

Информация!

Для обеспечения корректной работы без ухудшения качества, корпус преобразователя сигналов должен быть заземлен.

Расходомер с компактной электроникой требует только подключения питания и выходного сигнала.

4.3 Электрическая изоляция электроники в корпусе раздельного исполнения

Информация!

Для обеспечения корректной работы без ухудшения качества, корпус преобразователя сигналов должен быть заземлен.

Чтобы использовать расходомер в том виде, в котором он был поставлен, с кабелем, прикрепленным к обоим концам, установите корпус электроники и корпус расходомера в пределах длины кабеля.

Если кабель необходимо отсоединить (пропустить кабель через кабелепровод или по какой-либо другой причине), отсоедините кабель со стороны расходомера (распределительной коробки). Недопустимо отсоединение кабеля со стороны корпуса электроники, так как он залит эпоксидной смолой в металлическом разъеме.

На нем есть маркировка "Factory Sealed / Electronics End / Do Not Remove (Уплотнение выполнено на заводе / конец для подключения к электронике / не отключать)."

4.3.1 Подготовка сигнального кабеля

Если кабель должен быть укорочен или перемотан, окончания кабеля со стороны расходомера (клеммной коробки) должны быть подготовлены в соответствии со следующими рекомендациями:

3	Установите кабель в фитинг, так, чтобы он оказался внутри него. Поверните фитинг на один или два оборота, чтобы оплетка встала на место. Удалите кабель и осмотрите оплетку. Если части оплетки остались неубранными, отодвиньте их вручную и снова вставьте в фитинг. Удалите кабель и проверьте оплетку. Она должна быть сжата до длины примерно 9,512,7 мм / 3/81/2".	Сжатая медная оплетка
	Примечание: Фитинг подсоединяется к клеммной коробке (не изображено)	 Фитинг Резиновая втулка
4	Снимите внешнюю прозрачную оболочку и металлизированную майларовую пленку до окончания оплетки. Это оголяет внутренний многожильный заземляющий провод. Внутренняя прозрачная оболочка и наполнитель все еще на месте.	
5	Убедитесь, что многожильный заземляющий провод не касается внешней оплетки. Затем с помощью омметра убедитесь в отсутствии электрического соединения между многожильным заземляющим проводом и оплеткой по всей длине кабеля. На этом этапе также необходимо проверить, чтобы другой конец (со стороны электроники) кабеля был правильно заделан и что в кабеле отсутствуют повреждения или дефекты.	а = 9,512,7 мм / 3/81/2" 1 Верхняя прозрачная оболочка 2 Металлизированная майларовая пленка 3 Многожильный заземляющий провод 4 Внутренняя прозрачная оболочка
6	Сложите многожильный заземляющий провод обратно на упакованную оплетку и перемотайте его на один полный оборот. Затем отрежьте оставшуюся часть многожильного заземляющего провода.	
7	Отрежьте внутреннюю прозрачную оболочку и наполнитель до 12,715,9 мм / 1/2 - 5/8" от окончания внешней изоляции.	 а = 12,715,9 мм / 1/25/8" 1 Заземляющий многожильный провод сложен; перемотан на один оборот и обрезан 2 Витая пара
8	Отрежьте термоусадочную пленку длиной 12,7 мм / 1/2" и расположите ее так, чтобы половина пленки закрывала внутреннюю прозрачную оболочку/ наполнитель, а половина - оголенную витую пару. Подогрейте термоусадочную пленку. Примечание: Вместо термоусадочной пленки можно использовать изоленту шириной 12,7 мм / 1/2".	
9	Зачистите концы витой пары 6,4 мм / 1/4".	а = 12,7 мм / 1/2" b = 6,4 мм / 1/4" ① Гайка с накаткой ② Термоусадочная пленка или изолента

Таблица 4-1: Подготовка сигнального кабеля

4.3.2 Подключение сигнального кабеля

После подготовки окончания сигнального кабеля, подключите кабель к клеммной коробке.

- Вставьте кабель в фитинг, убедитесь, что кабель доходит до фитинга.
- Вставьте резиновую втулку в фитинг.
- Закрутите гайку с накаткой на место, прижав резиновую втулку к узлу.
 Закрутите гайку с вручную с умеренным усилием, чтобы обеспечить водонепроницаемое соединение.
- Уложите провода в клеммную коробку как изображено на рисунке.

Рисунок 4-1: Подключение сигнального кабеля ① Гайка с накаткой и резиновая втулка

4.3.3 Доступ к полевым клеммам расходомера

Для получения доступа к полевым клеммам, снимите крышку с отсека для полевых клемм как показано на рисунке. Обратите внимание, что рельефные буквы **FIELD TERMINALS** идентифицируют соответствующий отсек ②.

Рисунок 4-2: Доступ к полевым клеммам расходомера

- ① Соединение кабелепровода 1/2NPT или М20 для проводки заказчика. Еще один на противоположной стороне.
- ② Идентификация соответствующего отсека для полевых клемм
- ③ Внешнее заземление

Информация!

Закройте неиспользуемое отверстие прилагаемой металлической заглушкой (или аналогичной).
4.3.4 Идентификация на полевых клеммах

Полевые провода входят через резьбовые отверстия 1/2 NPT или M20 с обеих сторон корпуса электроники. Провода заканчиваются под винтовыми клеммами и шайбами на клеммной коробке (см. следующий рисунок) в полевом клеммном отсеке.

Рисунок 4-3: Идентификация на полевых клеммах

① Клеммный отсек (расположен со стороны клеммного отсека корпуса)

- 2 Клеммы имульсного выхода
- Э Физическое заземление
- Клеммы питания (+) и (-)
- ⑤ Штифт заземления расположен с внешней стороны клеммного блока

Информация!

Неиспользуемые отверстия необходимо заглушить с целью предотвращения попадания влаги и электромагнитных/радиопомех.

4.4 Подключение расходомера

4.4.1 Подключение расходомера к контуру управления

При подключении расходомера с выходным сигналом 4...20 мА напряжение питания и нагрузка контура должны находиться в указанных пределах. Зависимость выходной нагрузки источника питания от напряжения показана на следующем рисунке.

В затененной области можно использовать любую комбинацию напряжения питания и сопротивления нагрузки контура.

Чтобы определить сопротивление нагрузки контура (выходная нагрузка расходомера), добавьте последовательное сопротивление каждого компонента в контуре, исключая расходомер. Источник питания должен быть способен подавать ток контура 22 мА.

Рисунок 4-4: Зависимость нагрузки на выходе от напряжения питания

- Х [В пост.тока]: Напряжение питания
- Ү [Ом]: Нагрузка на выходе
- ① Минимальная нагрузка с конфигуратором или коммуникатором
- ② Максимум 30 В для искробезопасных устройств
- ③ 227,5 Ом при 17,7 В

Информация!

Расходомер работает с выходной нагрузкой менее 250 Ом при условии, что к нему не подключен конфигуратор для ПК или коммуникатор HART.

Подключение конфигуратора для ПК или коммуникатора HART при нагрузке ниже 250 Ом может привести к нарушению выходного сигнала и/или проблемам связи.

Примеры

- При сопротивлении нагрузки контура 300 Ом напряжение питания может быть любым в диапазоне от 19,1 до 30 В постоянного тока.
- При напряжении питания 24 В постоянного тока сопротивление нагрузки контура может быть любым в диапазоне от 250 до 520 Ом (от нуля до 520 Ом без коммуникатора HART или конфигуратора для ПК, подключенного к расходомеру).

Для подключения одного или нескольких расходомеров к источнику питания, выполните следующие действия.

- Снимите крышку с полевого клеммного отсека.
- Протяните сигнальные кабели (0,50 мм² или 20 AWG, типичные) через одно из электрических соедининений расходомера. Используйте витую пару для защиты выхода 4...20 мА и/или удаленной связи от электрических помех. Максимальная рекомендуемая длина сигнальных кабелей составляет 1800 м / 6000 футов.

Информация!

Не протягивайте провода расходомера в одно отверстие с проводами питания (питание переменного тока).

• При использовании экранированного кабеля, заземлите экран на отрицательной клемме источника питания.

Не заземляйте экран на расходомере.

- Закройте неиспользуемое отверстие прилагаемой металлической заглушкой 1/2 NPT или M20 (или аналогичной). Для обеспечения указанной взрывозащиты и защиты от воспламенения пыли заглушка должна быть вставлена как минимум на пять полных ниток резьбы для соединений 1/2 NPT; семь полных ниток для соединений M20.
- Расходомер имеет внутреннюю и внешнюю клемму заземления. Подключите заземляющий проводник к обоим клеммам в соответствии с локальными нормами.

Осторожно!

Если контур заземлен, предпочтительно делать это на отрицательной клемме источника питания постоянного тока. Чтобы избежать ошибок, возникающих из-за заземления контуров или возможности короткого замыкания групп приборов в контуре, в контуре должно быть только одно заземление.

- Подключите провода источника питания и приемников измерительного контура к клеммам "+" и "-".
- Подключите приемники (например, контроллеры, регистраторы, индикаторы) последовательно с источником питания и расходомером, как показано на следующем рисунке.
- Установите крышку на расходомер. Поверните крышку, чтобы посадить уплотнительное кольцо в корпус, и продолжайте затягивать вручную до тех пор, пока крышка не соприкоснется с корпусом металл-металл.
- При необходимости подключения дополнительных расходомеров к тому же источнику питания, повторите шаги 1-8 для каждого из них.
- В контуре между расходомером и источником питания можно подключить HART-коммуникатор или конфигуратор для ПК. Обратите внимание, что источник питания от коммуникатора HART или конфигуратора для ПК должно отделять минимум 250 Ом.

Рисунок 4-5: Схема соединения расходомера с выходом 4...20 мА

- ① Соединение кабелепровода 1/2NPT или M20 (2 точки)
- Э Внутренняя клемма заземления
- ③ Физическое заземление (необходимо для взрывозащищенных применений)
- ④ Внешняя клемма заземления
- ⑤ НАRТ-коммуникатор или конфигуратор для ПК
- Экранированный кабель (опция)
- ⑦ Заземление (опционально)
- ⑧ Приемник
- 9 Электропитание

4.4.2 Схема соединения расходомера с импульсным выходом

При использовании расходомера с импульсным выходом 4...20 мА или дискретным сигналом, требуется два отдельных контура. Для каждого контура необходим отдельный источник питания. На следующих чертежах изображены соединения с входом счетчика типа транзисторный переключатель (приемник); с входом счетчика типа транзисторный переключатель (приемник); когда питание подается от внешнего блока питания, с нагрузочным резистором; с входом счетчика типа транзисторный переключатель (источник), когда питание подается от внешнего блока питания, с нагрузочным резистором; с входом счетчика типа транзисторный переключатель (источник), когда питание подается от внешнего блока питания, с нагрузочным резистором.

Рисунок 4-6: Схема соединения расходомера с импульсным выходом с входом счетчика типа транзисторный переключатель (приемник) и источником питания от приемника

- ① Соединение кабелепровода 1/2NPT или M20 (2 точки)
- 2 Внутренняя клемма заземления (подключение заземляющего проводника в соответствии с локальными нормами)
- ③ Защитное заземление (требуется для взрывозащищенных применений)
- ④ Внешняя клемма заземления
- ⑤ НАRТ-коммуникатор или конфигуратор для ПК (общее сопротивление между конфигуратором и источником питания минимум 250 Ом)
- 🚯 Опциональный экранированный проводник (при использовании подключите экран к отрицательной клемме источника питания)
- 🕐 Опциональное заземление (рекомендуется, но не требуется заземление контура на отрицательной клемме источника питания)
- ⑧ Приемник
- Электропитание

Рисунок 4-7: Схема соединения расходомера с импульсным выходом с входом счетчика типа транзисторный переключатель (приемник), когда питание подается от внешнего блока питания, с нагрузочным резистором

- ① Соединение кабелепровода 1/2NPT или M20 (2 точки)
- 2 Внутренняя клемма заземления (подключение заземляющего проводника в соответствии с локальными нормами)
- 3 Защитное заземление (требуется для взрывозащищенных применений)
- Внешняя клемма заземления
- ⑤ НАRТ-коммуникатор или конфигуратор для ПК (общее сопротивление между конфигуратором и источником питания минимум 250 Ом)
- ⑥ Опциональный экранированный проводник (при использовании подключите экран к отрицательной клемме источника питания)
 ⑦ Опциональное заземление (рекомендуется, но не требуется заземление контура на отрицательной клемме источника питания)
- В Приемник
- Приемник
 Электропитание

① Нагрузочный резистор (макс. значение импульсного выхода 20 мА; нагрузочный резистор должен быть выбран соответствующего размера)

Рисунок 4-8: Схема соединения расходомера с импульсным выходом с входом счетчика типа транзисторный переключатель (источник), когда питание подается от внешнего блока питания, с нагрузочным резистором

- ① Соединение кабелепровода 1/2NPT или M20 (2 точки)
- 2 Внутренняя клемма заземления (подключение заземляющего проводника в соответствии с локальными нормами)
- ③ Защитное заземление (требуется для взрывозащищенных применений)
- ④ Внешняя клемма заземления
- ⑤ НАRТ-коммуникатор или конфигуратор для ПК (общее сопротивление между конфигуратором и источником питания минимум 250 Ом)
- 🛞 Опциональный экранированный проводник (при использовании подключите экран к отрицательной клемме источника питания)
- 🕐 Опциональное заземление (рекомендуется, но не требуется заземление контура на отрицательной клемме источника питания)
- 8 Приемник
- Электропитание
- ① Нагрузочный резистор (макс. значение импульсного выхода 20 мА; нагрузочный резистор должен быть выбран соответствующего размера)

4.5 Степень пылевлагозащиты

Корпус электроники преобразователя сигналов компактного и раздельного исполнения прибора выполняет требования к степени пылевлагозащиты IP66 /NEMA4X в соответствии с EN 60529.

Осторожно!

После выполнения всех работ по сервисному и техническому обслуживанию прибора необходимо вновь обеспечить указанную степень пылевлагозащиты.

Рисунок 4-9: Кабельный проходник

В связи с изложенным выше необходимо соблюдать следующие требования:

- Используйте только оригинальные уплотнительные прокладки. Они должны быть чистыми и не поврежденными. Повреждённые уплотнительные прокладки следует заменить.
- Используемые электрические кабели должны соответствовать нормативным требованиям и не иметь повреждений.
- Кабели должны быть проложены таким образом, чтобы перед прибором образовалась петля () для защиты от попадания влаги в корпус прибора.
- Кабельные проходники (2) должны быть плотно ввинчены. Обратите внимание, что диапазон зажима кабельного проходника соответствует внешнему диаметру кабеля.
- Установите прибор таким образом, чтобы кабельный проходник ни в коем случае не был направлен вверх ③.
- Закройте неиспользуемые кабельные проходники при помощи заглушек ④, соответствующих категории пылевлагозащиты.
- Не извлекайте из кабельного проходника установленную уплотняющую втулку.

5.1 Элементы индикации и управления

Связь с вихревым расходомером осуществляется через HART-протокол, конфигуратор для ПК РАСТware или опциональную локальную клавиатуру/дисплей.

Локальная клавиатура/дисплей

Локальный дисплей обеспечивает локальную индикацию данных измерений, состояния функции и справочной информации. Дисплей также предоставляет средства для выполнения сброса счетчика и полной конфигурации, калибровки и самодиагностики. Управление осуществляется с помощью четырех многофункциональных кнопок.

Рисунок 5-1: Описание локальной клавиатуры/дисплея

① Дисплей

- Э Кнопка "стрелка вправо" (ВВОД)
- Э Кнопка "стрелка вниз" (ДАЛЕЕ)
- ④ Кнопка "стрелка влево" (ВЫХОД)
- ⑤ Кнопка "стрелка вверх" (НАЗАД)

Кнопка	Функция		
Стрелка "влево"	Движение влево по структуре меню.		
(ВЫХОД)	Курсор перемещается влево в поле для ввода данных.		
	Выход из функции изменения выпадающего меню или ввода данных. ①		
	Ответ "Нет".		
Стрелка "вправо"	Движение вправо по структуре меню.		
(ввод)	Испольуется для получения доступа к режиму редактирования параметров.		
	Курсор перемещается вправо в поле ввода данных.		
	Ввод и сохранение изменений, внесенных в выпадающее меню или ввод данных. ①		
	Ответ "Да".		
Стрелка "вверх" (НАЗАД)	Движение вверх по структуре меню, выпадающему меню или перечню символов.		
Стрелка "вниз" (ДАЛЕЕ)	Движение вниз по структуре меню, выпадающему списку или перечню символов.		

Таблица 5-1: Описание кнопок управления

① При вводе данных несколько раз нажмите кнопку, пока курсор не дойдет до конца дисплея.

5.2 Основные принципы работы

5.2.1 Пароль

Отображаемая на дисплее информация не требует ввода пароля. Однако, для получения доступа к некоторым функциям (отличным от "Только для чтения"), таким как счетчик, настройки и калибровка/тестирование, могут потребовать ввода программируемого пользователем пароля.

Функция "LoPwd" позволяет сбросить счетчик полезной энергии и счетчик импульсов. Функция "HiPwd" предоставляет доступ ко всем функциям расходомера. Кроме того, перемычка для защиты от записи должна быть в положении "запись". См. раздел "Настройка перемычки для защиты от записи" на странице 45.

Информация!

Расходомер поставляется с завода без пароля. Это позволяет получить доступ ко всем функциям расходомера. Если требуется защита паролем, войдите в режим настройки "LoPwd" и/или "HiPwd".

Ввод пароля

Для получения доступа к функциям счетчика, настройкам и калибровке/тестирования может потребоваться пароль (4-символьная буквенно-цифровая строка). Выберите меню верхнего уровня «TotPul, TotNet, TotGrd, Setup или Cal/Tst» и нажмите ввод при запросе пароля. Затем во второй строке дисплея появятся две скобки, заключающие четыре пробела ([- - - -]). У первого символа появится курсор в виде мигающего значка.

Чтобы ввести пароль, используйте кнопки со стрелками вверх/вниз для прокрутки списка допустимых символов. После выбора нужного символа нажмите кнопку со стрелкой вправо, чтобы перейти к следующему символу. Продолжайте, пока не введете пароль. Повторное нажатие кнопки со стрелкой вправо перемещает мигающий курсор в правую скобку. Нажатие кнопки "ввод" завершает процесс. Перед нажатием кнопки "ввод" вы можете использовать кнопки со стрелками влево/вправо для перемещения вперед и назад, чтобы изменить неправильный выбор.

Если Вы ввели неверный пароль, на дисплее отобразится сообщение "Sorry" на одну секунду, затем он перейдет в режим "только для чтения".

Вы можете изменить пароль в меню настроек, фуункция "Passwd".

5.2.2 Редактирование чисел и строк

Редактирование любого числа или строки в системе меню происходит так же, как и ввод пароля. Кнопки со стрелками вверх/вниз прокручивают список допустимых символов для текущей позиции. Кнопка со стрелкой вправо перемещает курсор вправо. Также по нажатию кнопки происходит принятие изменений. Кнопка со стрелкой влево перемещает курсор влево. Это действие также отменяет изменения. Есть три типа элементов редактирования: числа со знаком, числа без знака и строки.

Числа со знаком

Числа со знаком имеют в начале знак + или -. Только знак + может быть изменен на знак -, и наоборот.

Числа без знака

Для чисел без знака циклически перебирайте цифры 0–9 и десятичную запятую с помощью кнопок со стрелками вверх/вниз. Когда вы вводите десятичную запятую в любой позиции, а десятичная запятая уже находится слева от курсора, новая десятичная запятая заменяет старую.

Строки

Символы в строках можно изменить на любой допустимый символ. Вы можете последовательно перемещаться по списку символов, нажимая кнопки со стрелками вверх/вниз. Для выполнения изменения, необходимо нажать кнопку "ввод" с правой стороны поля данных после прокрутки вправо с помощью кнопки со стрелкой вправо.

5.2.3 Заводские настройки по умолчанию

Каждый расходомер обычно поставляется с завода с индивидуальной настройкой параметров. Если данные применений не поставляются с заказом на поставку, расходомер поставляется со следующими настройками по умолчанию. Однако расходомер не будет обеспечивать точное измерение, если конфигурация не соответствует вашему применению. Обязательно проверьте конфигурацию расходомера перед запуском.

Поз.	Метрические единицы	Британские единицы	
Измеряемая среда	Жидкость (вода)	Жидкость (вода)	
Тип расхода	Объём	Объём	
Единицы измерения	м ³ /с	гал/мин	
Температура измеряемой среды	20°C	68°F	
Рабочая плотность	998,21 кг/м ³	62,316 фунт/фут ³	
Абсолютная вязкость	1,002 c⊓	1,002 c⊓	
Верхнее значение диапазона	Верхний предел для типоразмера расходомера	Верхний предел для типоразмера расходомера	

Таблица 5-2: Настройки по умолчанию, данные по применению не предоставлены

Данные настройки по умолчанию **HE** рекомендуется использовать для общих условий эксплуатации. Если другая информация о процессе недоступна, при вводе типа среды (жидкость, газ или пар) в меню "Setup > Fluid > New" создаются базы данных по умолчанию, пример приведен ниже.

Поз.	Метрические единицы	Британские единицы	
Измеряемая среда	Жидкость (вода)	Жидкость (вода)	
Тип расхода	Аналогично существующей конфигурации		
Единицы измерения	Аналогично существующей конфигурации		
Температура измеряемой среды	20°C	68°F	
Рабочая плотность	998,21 кг/м ³	62,316 фунт/фут ³	
Абсолютная вязкость	1,002 cП	1,002 cП	
Верхнее значение диапазона	Верхний предел для типоразмера расходомера	Верхний предел для типоразмера расходомера	

Таблица 5-3: Настройки по умолчанию для жидкости

Поз.	Метрические единицы	Британские единицы	
Измеряемая среда	Пар	Пар	
Тип расхода	Аналогично существующей конфигурации		
Единицы измерения	Аналогично существующей конфигурации ①		
Температура измеряемой среды	178,3°C	352,9°F	
Рабочая плотность	4,966 кг/м ³	0,310 фунт/фут ³	
Абсолютная вязкость	0,015 c∏	0,015 cП	
Верхнее значение диапазона	Верхний предел для типоразмера расходомера	Верхний предел для типоразмера расходомера	

Таблица 5-4: Настройки по умолчанию для пара

① Единицы измерения жидкости галлоны, литры, британских галлонов или баррелей в единицу времени не переносятся на газ.

Поз.	Метрические единицы	Британские единицы	
Измеряемая среда	Газ (воздух)	Газ (воздух)	
Тип расхода	Аналогично существующей конфигурации		
Единицы измерения	Аналогично существующей конфигурации ①		
Температура измеряемой среды	20°C	68°F	
Рабочая плотность	9,546 кг/м ³	0,596 фунт/фут ³	
Абсолютная вязкость	0,0185 c∏	0,0185 c∏	
Верхнее значение диапазона	Верхний предел для типоразмера расходомера	Верхний предел для типоразмера расходомера	

Таблица 5-5: Настройки по умолчанию для газа

🛈 Единицы измерения жидкости галлоны, литры, британских галлонов или баррелей в единицу времени не переносятся на газ.

5.3 Использование дерева меню

5.3.1 Навигация по меню

Нажатие кнопки "ввод" останавливает измерения и отображает первый верхний уровень, меню счетчика, пункт "1 TotPul". Для перехода к функции "1 TotNet" и "1 Tot Grd" нажмите кнопку вниз. Для редактирования выбора, нажмите кнопку "ввод". Для выбора функции "Off" (выкл. счетчик), "On" (вкл. счетчик) или "Clear" (сброс счетчика) нажмите кнопку вниз, затем нажмите кнопку "ввод". Для возврата в режим измерения, нажмите кнопку "выход".

Нажатие кнопки "выход" останавливает измерение и отображает первый элемент в оставшейся части верхнего уровня меню "1 Measure". С данной позиции при помощи четырех кнопок можно передвигаться по дереву меню.

Для просмотра каждого пункта меню нажимайте стрелку вниз. Для перехода из меню на пункт подменю, нажмите стрелку вправо. Для перехода на более высокий уровень, нажмите на стрелку влево.

Информация!

Каждому пункту меню соответствует уровень (1 – 5), отображаемый в начале верхней строки.

5.3.2 Верхний уровень меню

Выше была указана информация о пунктах меню счетчика. На верхнем уровне меню отображается шесть режимов – "Measure, Status, View, Setup, и Calibration/Test". Переключение между режимами осуществляется при помощи внопок вверх/вниз. Для перехода на второй уровень меню, нажмите стрелку вправо. Для возврата на второй уроень меню, нажмите стрелку влево. Уровень первого, второго, третьего, четвертого и пятого уровня меню отображается в виде цифры перед первым символом в строке 1 на дисплее; 1 обозначает уровень 1 (верхний уровень), 2 обозначает 2-й уровень, а 3 - 3-й, и так далее.

Режимы верхнего уровня и их основные функции:

Верхний уровень		Основные функции	Описание		
(Параметры измерения)		Значения измеряемых параметров По дополнительным данным смотрите <i>Режим измерения</i> на странице 49.	Это нормальный режим работы. Он отображает настроенные измерения. Он также указывает, существуют ли диагностические условия. Выбранное измерение по умолчанию отображается, когда преобразователь сигналов включен.		
	1 TotPul	Сброс счетчиков	Данный режим позволяет выполнить сброс		
	1 TotNet	Режим настройки счетчиков на странице	каждого счетчика.		
	1 TotGrd	49.			
	1 Measure	Значения измеряемых параметров	При нажатии кнопки "ввод" или "выход", выполняется возврат в режим измерения.		
	1 Status	Статус параметров По дополнительным данным смотрите <i>Режим статуса</i> на странице 50.	В данном режиме указана информация о статусах разных параметров, защите от записи и любых диагностических ошибках.		
	1 View	Обзор параметров По дополнительным данным смотрите <i>Режим просмотра</i> на странице 51.	Данный режим используется для отображения информации по умолчанию: модель, поверитель и дата калибровки, номер ревизии ПО.		
	1 Setup	Настройки параметров По дополнительным данным смотрите <i>Режим настройки</i> на странице 51.	Данный режим используется для настройки (конфигурации) расходомера согласно применению. Он включает следующие параметры: "Defining, Fluid, Flow, Tuning, Total, Output, Piping, Tags, Flowtube и Password".		
	1 Cal/Tst	Параметры калибровки/тестирования По дополнительным данным	Данный режим используется для выполнения некоторых функций калибровки и тестирования.		

Таблица 5-6: Верхний уровень меню

Информация!

В зависимости от конфигурации Вашего устройства, некоторые пункты меню, описанные в данной главе, могут отсутствовать.

5.3.3 Режим измерения

При нормальной работе расходомер отображает те измерения, которые указаны в режиме настройки.

В ручном режиме переход между измерениями осуществляется при помощи стрелок вверх/вниз. В автоматическом режиме на дисплее циклически указаны измерения. Если в автоматическом режиме Вам необходимо увидеть определенный параметр, к нему можно перейти при помощи стрелки вниз. Для перехода к определенному измерению используйте стрелку вверх/вниз. Сканирование возобновляется после нажатия стрелки вниз.

5.3.4 Режим настройки счетчиков

Функции "TotPul, TotNet или TotGrd" используются для включения, остановки или сброса счетчика. Это можно выполнить при помощи нажатия кнопки "ввод", выбора параметра "On, Paused или Clear" и повторного нажатия кнопки. Перед выполнением данного действия может быть запрошен пароль. Если необходим пароль, войдите в функцию "LoPwd или HiPwd" для "TotPul и TotNet". Войдите в функцию "HiPwd" для "TotGrd".

Информация!

Очистка функции "TotGrd" также приводит к очистке "TotPul и TotNet".

5.3.5 Режим статуса

Подуровень данного режима "MeaStat" позволяет просмотреть единицы измерения, значения и статус параметров системы, и таким образом оценить производительность контура. В данном режиме редактирование невозможно.

Для передвижения по параметрам на дисплее, используйте стрелку вверх/вниз. Структура режимов состояния представлена ниже.

В подуровне данного режима "WrProt" показано, включена (Prot) или выключена (NotProt) защита от записи.

В подуровне "DiagEr" отображены любые диагностические ошибки. Значение 0000 означает, что ошибки отсутствуют.

Информация!

Новое состояние диагностики появляется только после обнаружения диагностического сообщения в режиме измерения.

1 ;	Status					
	2 MeaStat					
		3 Velcty	Единица			
		3 Raw Hz	измерения Значение			
		3 KRef	Состояние			
		3 KCor				
		3 KFlow				
		3 mA Out				
		3 Pulse				
		3 Reynld				
	2 WrProt	·				
	2 DiagEr					
	2 Reason					

Таблица 5-7: Режим статуса

5.3.6 Режим просмотра

Режим просмотра позволяет просмотреть праметры идентификации. В данном режиме редактирование невозможно. Для перемещения курсора по параметрам используйте стрелку вверх/вниз.

1 \	1 View			
	2 HrtTag	Технологическая позиция HART		
	2 HartAdr	Адрес HART		
	2 HartMsg	Сообщение HART		
2 HartDes		Обозначение HART		
2 Model		Модель		
	2 CalDate	Дата последней калибровки		
	2 CalName	Инициалы поверителя		
	2 SW Rev	Версия программного обеспечения		

Таблица 5-8: Режим просмотра

5.3.7 Режим настройки

Режим настройки позволяет выполнить конфигурацию параметров измеряемой среды, расхода, настроек, счетчика, выходного сигнала, трубы, технологической позиции, измерительной трубы и пароля. Также в данном режиме можно установить и изменить пароли. Также данный режим может быть защищен паролем. Поэтому, чтобы внести изменения в данном режиме, после первоначальной настройки может потребоваться войти в функцию "HiPwd". По дополнительным данным смотрите *Пароль* на странице 44.

Информация!

Если данные о пароле утеряны, свяжитесь с представителем нашей компании.

Если на преобразователе сигналов установлена защита от записи, при попытке входа в режим настройки, на дисплее появится надпись "Rd Only". В таком случае Вы не сможете войти в режим настройки и внести изменения. У Вас будет возможность просмотреть, но не редактировать настройки.

При попытке входа в данный режим появится сообщение "Loop in Manual?" ("Переключить на ручной режим?"). После переключения на ручное управление, нажмите "yes" ("да") при помощи кнопки "ввод". Это также автономный режим. Аналоговый выходу становлен на 4 мА, имульсный - на 0.

1 5	1 Setup				
	2 Fluid				
		3 New-> Edit ▽			
		3 FldТур (Только для чтения)			
		3 Name			
		3 TmpEGU			
		3 FlwTmp			
		3 DenEGU* * Если единицы измерения установлены пользователем 4 Label			
		3 FlwDen	4 Offset		
		3 BasDen	4 Slope		
		3 LfciEGU (Только д	для чтения)		
		3 Lfci (Только для ч	тения)		
		3 VisEGU			
		3 Visc			
	2 Flow				
		3 FlwMap			
		3 FlwEGU*			
		3 FlwURV			
		3 FlwDmp			
		3 VelEGU			
	2 Tuning				
		3 AddDrop			
		3 RdCorr			
		3 LFCI			
			4 FlwEGU		
		4 Setting			
	2 Total				
		3 TotNet			
		4 Map			
		4 EGU *			
		3 TotGrd			
		4 Map			
		4 EGU *			

2 Output				
	3 Coms			
		4 PolAdr		
		4 Preambl		
	3 Pulse	4 Pulse		
		Если Raw Pul=Raw		
		Если Rate 4 Freq	Если Tot U/P 4 P width 4 EGU 4 Factor	
	3 Fail			
	3 Display			
		4 Show		
			5 FlwVol	
			5 Format	
			5 TotNet	
			5 Format	
			5 TotGRD	
			5 Format	
		4 Show1st		
		4 Cycle		
2 Pipe	1			
	3 Piping			
		4 Config		
		4 Updist		
	3 BoreSch			
	3 Custom			
2 Tags				
	3 HrtDes			
	3 HrtTag			
2 NewTube				
	3 Model			
	3 Special			
		4 TubDia		
		4 TubAlp		
		4 LfUFac		
	3 K Ref			
		4 K EGU		
		4 K Ref		
2Passwd				
	4 LoPwd			
	4 HiPwd			

Таблица 5-9: Режим настройки

5.4 Описание режима настройки

5.4.1 Настройка параметров измеряемой среды

Раздел "2 Fluid" режима настройки позволяет выполнить конфигурацию параметров для типа измеряемой среды, названия измеряемой среды (опция), единицы измерения температуры, рабочей температуры, единицы измерения плотности, рабочей плотности, стандартной плотности, единицы измерения вязкости и вязкости.

Информация!

Если Вас устраивают существующие параметры измеряемой среды, **НЕ** вводите 3 новых параметра; данное действие сбросит все другие параметры среды.

- В разделе "З New" выберите измеряемую среду (жидкость, газ или пар), чтобы получить базу данных по умолчанию для данной среды. По дополнительным данным смотрите Заводские настройки по умолчанию на странице 46. В функции "З Edit" можно выполнить редактирование существующей конфигурации измеряемой среды.
- В "FldTyp" отображается тип конфигурируемой измеряемой среды.
- В "З Name" можно указать имя определенной измеряемой среды (опция)
- В "3 TmpEGU" можно выбрать единицу измерения температуры (°F, °C, °R, или °K).
- В "3 FlwTmp" можно указать рабочую температуру в указанных единицах измерения.
- В "3 DenEGU" можно выбрать единицу измерения плотности из следующего перечня: kg/m3, lb/Yd3, lb/gal, oz/in3, lb/ft3, g/cm3, ST/Yd3, LT/Yd3, Custom.
 При выборе значения "Custom", необходимо указать свою единицу измерения. Сначала введите индекс для пользовательской единицы длиной до восьми буквенно-числовых символов. Затем введите любое смещение и коэффициент преобразования (slope) от килограммов на кубический метр.
- В "3 FlwDen" введите рабочую плотность в указанных единицах измерения.
- В "3 BasDen" введите стандартную плотность в указанных единицах измерения.
- В разделе "LfciEGU" отображены единицы измерения отсечки малых расходов.
- В разделе "Lfci" отображено конфигурируемое значение отсечки малых расходов.
- В "3 VisEGU" можно выбрать единицу измерения вязкости (cPoise, Poise, cStoke или PaSec.
- В "3 Visc" введите вязкость в указанных единицах измерения.

В следующей таблице указаны доступные инженерные единицы измерения (EGUs). Доступные опции для функции EGU зависят от выбора в функции "FlwMap" (VolFlow, BVolFlow, MassFlow или Velocity), и указанных единиц измерения в меню "1 Setup > 2 Flow > 3 FlwEGU".

Измеряемая среда	Значение, выбранное в "FlwMap"	Доступные единицы измерения
Жидкость	Объем (VolFlow)	m3/s, m3/m, m3/h, m3/d, gal/s, gal/m, gal/h, gal/d, Mgal/d, l/s, l/m, l/h, l/d, Ml/h, Ml/d, ft3/s, ft3/m, ft3/h, ft3/d, bbl3/s(31.5), bbl3/m, bbl3/h(31.5), bbl3/d, bbl/s, bbl/m, bbl/h, bbl/d, igal/s, igal/m, igal/h, igal/d, mcfd, mmcfd, Custom
	Объёмный расход при н.у. (BVolFlow > StdVol)	Sm3/s, Sm3/m, Sm3/h, Sm3/d, Sft3/s, Sft3/m, Sft3/h, Sft3/d, Sgal/s, Sgal/m, Sgal/h, Sgal/d, Sbl3/s (31.5), Sbl3/m (31.5), Sbl3/h (31.5), Sbl3/d (31.5), Sbbl/s (42), Sbbl/m (42), Sbbl/h (42), Sbbl/d (42), mScfd, mmScfd, Custom
	Нормальный объем (BVolFlow > NormVol)	Ngal/s, Ngal/m, Ngal/h, Ngal/d, Nl/s, Nl/m, Nl/h, Nl/d, Nm3/s, Nm3/m, Nm3/h, Nm3/d, Custom
	Macca (MassFlow)	kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, lb/s, lb/m, lb/h, lb/d, mton/h, mton/d, STon/s, STon/m, STon/h, STon/d, oz/s, oz/m, oz/h, oz/d, mton/s, mton/m, LTon/m, LTon/h, LTon/d, Custom
	Скорость	m/s, m/m, m/h, m/d, ft/s, ft/m, ft/h, ft/d
Газ	Объем (VolFlow)	ft3/s, ft3/m, ft3/h, ft3/d, m3/s, m3/m, m3/h, m3/d, mcfd, mmcfd, Custom
	Объёмный расход при н.у. (BVolFlow > StdVol)	Sft3/s, Sft3/m, Sft3/h, Sft3/d, mScfd, mmScfd, Sm3/s, Sm3/m, Sm3/h, Sm3/d, Custom
	Нормальный объем (BVolFlow > NormVol)	Nm3/s, Nm3/m, Nm3/h, Nm3/d, Nl/s, Nl/m, Nl/h, Nl/d, Custom
	Macca (MassFlow)	lb/s, lb/m, lb/h, lb/d, kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, mTon/s, mTon/m, mTon/h, mTon/d, STon/s, STon/m, STon/h, STon/d, LTon/m, LTon/h, LTon/d, oz/s, oz/m, oz/h, oz/d, Custom
	Скорость	ft/s, ft/m, ft/h, ft/d, m/s, m/m, m/h, m/d
Пар	Объем (VolFlow)	ft3/s, ft3/m, ft3/h, ft3/d, m3/s, m3/m, m3/h, m3/d, mcfd, mmcfd, Custom
	Macca (MassFlow)	lb/s, lb/m, lb/h, lb/d, kg/s, kg/m, kg/h, kg/d, g/s, g/m, g/h, g/d, mTon/s, mTon/m, mTon/h, mTon/d, STon/s, STon/m, STon/h, STon/d, LTon/m, LTon/h, LTon/d, oz/s, oz/m, oz/h, oz/d, Custom
	Скорость	ft/s, ft/m, ft/h, ft/d, m/s, m/m, m/h, m/d

Таблица 5-10: Доступные единицы измерения

5 Эксплуатация

Единица измер.	Описание	Единица измер.	Описание	Единица измер.	Описание
lb/ft3	фунты на кубический фут	LTon/d	длинная тонна в день (2240 фунтов)	Sm3/m	Стандартные кубические метры в минуту
lb/gal	фунты на галлон США	m3/s	кубические метры в секунду	Sm3/h	Стандартные кубические метры в час
oz/in3	Унций на кубический дюйм	m3/m	кубический метр в минуту	Sm3/d	Стандартный кубический метр в день
kg/m3	килограмм на кубический метр	m3/h	кубический метр в час	Sft3/s	Стандартный кубический фут в секунду, система США
kg/l	килограмм на литр	m3/d	кубический метр в день	Sft3/m	Стандартный кубический фут в минуту, система США
g/cm3	грамм на кубический сантиметр	ft3/s	кубический фут в секунду	Sft3/h	Стандартный кубический фут в час, система США
lb/Yd3	фунт на кубический ярд	ft3/m	кубический фут в минуту	Sft3/d	Стандартный кубический фут в день, система США
LT/Yd3	длинная тонна на кубический ярд	ft3/h	кубический фут в час	Sgal/s	Стандартный американский галлон в секунду
ST/Yd3	короткая тонна на кубический ярд	ft3/d	кубический фут в день	Sgal/m	Стандартный американский галлон в минуту
kg/s	килограмм в секунду	gal/s	Американский галлон в секунду	Sgal/h	Стандартный американский галлон в час
kg/m	килограмм в минуту	gal/m	Американский галлон в минуту	Sgal/d	Стандартный американский галлон в день
kg/h	килограмм в час	gal/h	Американский галлон в час	Sbl3/s	Стандартный баррель в секунду (31,5 американских галлонов на баррель)
kg/d	килограмм в день	gal/d	Американский галлон в день	Sbl3/m	Стандартный баррель в минуту (31,5 американских галлонов на баррель)
lb/s	фунт в секунду	Igal/s	английский галлон в секунду	Sbl3/h	Стандартный баррель в час (31,5 американских галлонов на баррель)
lb/m	фунт в минуту	Igal/m	английский галлон в минуту	Sbl3/d	Стандартный баррель в день (31,5 американских галлонов на баррель)
lb/h	фунт в час	lgal/h	английский галлон в час	Sbbl/s	Стандартный баррель в год (42 американских галлонов на баррель)
lb/d	фунт в день	lgal/d	английский галлон в день	Sbbl/m	Стандартный баррель в год (42 американских галлонов на баррель)
g/s	грамм в секунду	bbl3/s	Баррель в секунду (31,5 американских галлонов = баррель)	Sbbl/h	Стандартный баррель в год (42 американских галлонов на баррель)
g/m	грамм в минуту	bbl3/m	Баррель в минуту (31,5 американских галлонов = баррель)	Sbbl/d	Стандартный баррель в год (42 американских галлонов на баррель)

Единица измер.	Описание	Единица измер.	Описание	Единица измер.	Описание
g/h	грамм в час	bbl3/h	Баррель в час (31,5 американских галлонов = баррель)	mScfd	тысяча стандартных кубических футов за 24 часа
g/d	грамм в день	bbl3/d	Баррель в день (31,5 американских галлонов = баррель)	mmScfd	миллион стандартных кубических футов за 24 часа
oz/s	унций в секунду	bbl/s	Баррель в секунду (42 американских галлонов = баррель)	Nm3/s	Нормальный кубический метр в секунду, система МКС
oz/m	унций в минуту	bbl/m	Баррель в минуту (42 американских галлонов = баррель)	Nm3/m	Нормальный кубический метр в минуту, система МКС
oz/h	унций в час	bbl/h	Баррель в час (42 американских галлонов = баррель)	Nm3/h	Нормальный кубический метр в час, система МКС
oz/d	унций в день	bbl/d	Баррель в день (42 американских галлонов = баррель)	Nm3/d	Нормальный кубический метр в день, система МКС
mTon/s	метрическая тонна в секунду	l/s	литр в секунду	Ngal/s	Нормальный американский галлон в секунду
mTon/m	метрическая тонна в минуту	l/m	литр в минуту	Ngal/m	Нормальный американский галлон в минуту
mTon/h	метрическая тонна в час	l/h	литр в час	Ngal/h	Нормальный американский галлон в час
mTon/d	метрическая тонна в день	l/d	литр в день	Ngal/d	Нормальный американский галлон в день
STon/s	короткая тонна в секунду (2000 фунтов)	Ml/h	миллион литров в час	NI/s	Нормальный литр в секунду, система МКС
STon/m	короткая тонна в минуту (2000 фунтов)	MI/d	миллион литров в день	NI/m	Нормальный литр в минуту, система МКС
STon/h	короткая тонна в час (2000 фунтов)	Mgal/d	миллион американских галлонов в день	NI/h	Нормальный литр в час, система МКС
STon/d	короткая тонна в день (2000 фунтов)	mcfd	тысяча кубических футов в день	NI/d	Нормальный литр в день, система МКС
LTon/m	длинная тонна в минуту (2240 фунтов)	mmcfd	миллион кубических футов в день	Custom	Пользовательские единицы измерения расхода
LTon/h	длинная тонна в час (2240 фунтов)	Sm3/s	Стандартный кубический метр в секунду		

Таблица 5-11: Описание всех единиц измерения (объемного расхода, массового расхода, расчетного объема и скорости)

EGU	Описание	EGU	Описание	
Вязкость		Плотнос	Плотность	
PaSec	Паскаль*секунда	lb/ft3	фунты на кубический фут	
cPoise	сантипуаз	lb/gal	фунты на галлон США	
К-фактор		oz/in3	унция на кубический дюйм	
m3/p	кубический метр на импульс	kg/m3	килограмм на кубический метр	
p/l	импульсы на литр	kg/l	килограмм на литр	
p/ft3	импульсы на кубический фут	g/cm3	грамм в кубический сантиметр	
Температура		lb/Yd3	фунт на кубический ярд	
degF	градусы Фаренгейта	LT/Yd3	длинная тонна на кубический ярд	
degR	градусы Ранкина	ST/Yd3	короткая тонна на кубический ярд	
degC	градусы Цельсия	Custom	Пользовательские единицы измерения плотности	
degK	градусы Кельвина		·	

Таблица 5-12: Описание единиц измерения вязкости, к-фактора, плотности и температуры

5.4.2 Настройка параметров расхода

В разделе "2 Flow" режима "Настройка" можно сконфигурировать параметры расхода.

В разделе "З FlwMap" выберите функцию "VolFlow, BVolFlow, MassFlow или Velocity".

Информация!

Перед изменение функции с "VolFlow" на "BVolFlow", счетчик должен быть обнулен.

- При наличии расхода, необходимо выключить счетчик и очистить его.
- При отсутствии расхода, очистите счетчик.

По дополнительным данным смотрите Режим настройки счетчиков на странице 49.

В разделе "3 FlwEGU" выберите необходимую единицу измерения расхода из перечня. При выборе значения "Custom", необходимо указать свою единицу измерения. Сначала укажите индекс для Вашей единицы измерения длиной максимум восемь буквенно-числовых символов. Затем введите любое смещение (Offset) и коэффициент преобразования (Slope) от килограммов в секунду (kg/s) для единиц измерения массового расхода или от кубических метров в секунду (m3/s) для единиц измерения объемного расхода или расчетного объема.

Пример: Коэффициент преобразования для пользовательской единицы измерения от ярд³/мин будет 78,47704, так как 78,47704 ярд³/мин = 1 м³/с.

В разделе "3 FlwURV" введите верхнее значение диапазона в только что выбранной единице измерения расхода.

В разделе "3 FlwDmp" из перечня выберите коэффициент демпфирования.

В разделе "3 VelEGU" выберите из перечня необходимую единицу измерения скорости.

5.4.3 Настройка параметров наладки

В разделе "2 Tuning" режима "Настройка" можно задать некторые опции расходомера.

- В разделе "З AddDrop" настройте функцию компенсации импульса (формирования сигнала) на значение "on" (вкл.) или "off" (выкл.).
- В разделе "3 RdCorr" настройте функцию коррекции числа Рейнольдса на значение "on" (вкл.) или "off" (выкл.).
- В разделе "3 LFCI" установите отсечку малых расходов на значение, выше которого расходомер начинает измерение расхода. Выберите выход, который обеспечивает отсутствие выходного сигнала при отсутствии расхода. В пункте "4 FlwEGU" обратите внимание на единицы измерения расхода. В пункте "4 Setting" выберите из перечня необходимое значение.

Информация!

Параметр "LFCI" может быть автоматически установлен расходомером в режим калибровки/тестирования.

5.4.4 Настройка параметров счетчиков

В разделе "2 Total" режима "Настройка" можно выполнить конфигурацию каждого из двух счетчиков. Конфигурацию можно выполнить в разделе "3 TotNet" и "3 TotGrd".

Информация!

Перед изменением функции с "VolFlow" на "BVolFlow", счетчик должен быть обнулен.

- При наличии расхода, необходимо выключить счетчик и очистить его.
- При отсутствии расхода, очистите счетчик.

По дополнительным данным смотрите Режим настройки счетчиков на странице 49.

Для каждого счетчика:

- В разделе "4 Мар" установите счетчик на значение volume (объем), mass (масса), или base volume (основной объем).
- В разделе "4 EGU" выберите единицу измерения из представленного перечня. При выборе значения "Custom", необходимо указать свою единицу измерения. Сначала укажите индекс для Вашей единицы измерения длиной максимум восемь буквенно-числовых символов. Затем введите любое смещение (Offset) и коэффициент преобразования (Slope) от килограммов (kg) или от кубических метров (m3) (для единиц измерения объемного расхода или расчетного объема).

Пример: Коэффициент преобразования для пользовательской единицы измерения 42 галлон баррель будет 6,2898, так как 6,2898 баррель = 1 м³.

5.4.5 Настройка параметров выходного сигнала

В разделе "2 Output" можно сконфигурировать параметры HART-протокола, токового, импульсного выхода и дисплея.

Передача данных при помощи коммуникационных протоколов

Нет необходимости определять параметры, которые должны отображаться в системе I/A Series, так как они уже определены. Первичной переменной является расход (объемный, базовый объемный или массовый); второй переменной является значение счетчика полезной энергии; третьей переменной является значение счетчика суммарной энергии.

В разделе "3 Coms" установите параметры коммуникационных протоколов:

- В разделе "4PolAddr" выберите адрес опроса из списка, представленного числами от 0 до 15.
- В разделе "4 Preambl" установите число преамбул от 2 до 20.

Токовый выход

В разделе "3 Fail" сконфигурируйте, в какое значение должен быть установлен токовый выходной сигнал при появлении неисправности.

Импульсный выход (если импульсный выход заказан)

В разделе "3 Pulse" войдите в пункт "4 Pulse" и выберите тип импульсного выхода "Rate (частотный), Total (числоимпульсный), Raw (необработанный), или Off (выкл.)".

Если установлено значение "Rate", сконфигурируйте следующее: В разделе "4 Freq", выберите величину частоты верхнего предела изменений, соответствующую наивысшей генерируемой частоте 10, 100 или 1000 Гц.

Если установлено значение "Total", сконфигурируйте следующее:

- В разделе "4 Pwidth" выберите ширину импульса 0,5, 5 или 50 мс.
- В разделе "4 EGU" выберите единицы измерения из предложенного перечня.
- В разделе "4 U/Pulse" введите значение единиц на импульс.

При выборе значения "Raw", выполнение давльнейших действий не требуется.

Дисплей

В разделе "3 Display" сконфигурируйте параметры дисплея.

В разделе "4 Show" задайте, нужно ли отображать значение каждого из следующих измеренных величин, и, если нужно, формат (Format), то есть положение десятичной точки на отображаемом значении:

- В разделе "5 FlwVol" отображение объемного расхода.
- В разделе "5 TotNet" общее значение счетчика.
- В разделе "5 TotGrd" суммарное значение счетчика.

В разделе "4 Show1st" выберите измеряемое значение, которое отображается первым: "FlwVol, Velcty, FlwBVo, FlwMas или Raw".

В разделе "4 Cycle" задайте метод сканирования сконфигурированных для отображения параметров: автоматически (Auto) или вручную (Manual).

5.4.6 Настройка параметров трубопровода

В разделе "2 Ріре" режима "Настройка" можно сконфигурировать параметры соответствующего трубопровода.

Трубопровод

В разделе "3 Piping" сконфигурируйте параметры, используемые расходомером для корректировки влияния на К-фактор участков трубопровода и местных сопротивлений, расположенных перед расходомером, следующим образом:

- В разделе "4 Config" выберите из перечня конфигурацию трубопровода, расположенного перед расходомером:
 - Straight (Прямая труба)
 - 1 EL PAR (1 колено, тело обтекания расположено параллельно плоскости колена)
 - 1 EL PER (1 колено, тело обтекания расположено перпендикулярно плоскости колена)

- 2L0PDPAR (2 колена, тело обтекания расположено параллельно плоскости ближайшего колена и расстояние между коленами равно нулю диаметров трубы)

- 2L0PDPER (2 колена, тело обтекания расположено перпендикулярно плоскости ближайшего колена и расстояние между коленами равно нулю диаметров трубы)

- 2L5PDPAR (2 колена с телом обтекания, расположенным параллельно плоскости ближайшего колена, и расстоянием до ближайшего колена равным 5 диаметрам трубы)

 - 2L5PDPER (2 колена с телом обтекания, расположенным перпендикулярно плоскости ближайшего колена, и расстоянием до ближайшего колена равным 5 диаметрам трубы)
 - Reducer (концентрический переход)

• В разделе "4 UpDist" введите расстояние до первого возмущения потока, в трубопроводе вверх по потоку, выраженное в диаметрах трубы.

Внутренний диаметр трубы

В разделе "3 BorSch" выберите диаметр трубы из следующего перечня: "Sched 10, Sched 40, Sched 80, PN16, PN40, PN64, PN100 или Sanitary (санитарно-техническая)".

В разделе "3 Custom" введите значение "Kref Bias" в процентах (%). Например: для изменения Kref на 2%, введите значение 2.000.

5.4.7 Установка параметров тега

В разделе "2 Tags" режима "Настройка" можно сконфигурировать следующие параметры идентификации:

- В разделе "3 HrtDes" введите описание прибора.
- В разделе "З HrtTag" введите при необходимости буквенно-числовое описание.

5.4.8 Установка параметров первичного преобразователя

В разделе "2 NewTube" режима "Настройка" можно сконфигурировать следующие параметры первичного преобразователя:

Модель

В разделе "3 Model" введите код модели первичного преобразователя (максимум 16 символов), указанный на типовой табличке расходомера. Код уже находится в базе данных прибора, если первичный преобразователь и преобразователь сигналов были поставлены в комплекте.

Специальная версия первичного преобразователя

Если Ваш первичный преобразователь отличается от указанного, Вы можете заменить определенные параметры модели в разделе "З Special" следующим образом:

- В разделе "4 TubDia" введите пользовательский диаметр измерительной трубы в метрах.
- В разделе "4 TubAlp" введите коэффициент теплового расширения (альфа) в м/м/°К.
- В разделе "4 LfUFac" введите значение коэффициента отсечки малых расходов.

Идентификационный номер

В разделе "3 Ref No" введите идентификационный номер (серийный номер) первичного преобразователя (максимум 16 сиволов), указанный на типовой табличке. Если первичный преобразователь и преобразователь сигналов были поставлены в комплекте, номер уже будет в базе данных.

К-фактор

В разделе "3 К Ref" введите К-фактор:

- В разделе "4 К EGU" выберите единицу измерения К фактора: p/l или p/ft3.
- В разделе "4 К Ref" введите К-фактор, указанный на типовой табличке расходомера.

5.4.9 Изменение пароля

В разделе "2 Passwd" режима "Настройка" можно установить или изменить пароли.

В разделе "4 LoPwd" введите новый пароль, чтобы получить доступ к функции очистки (сброса) счетчика полезной энергии и счетчика импульсов.

В разделе "4 HiPwd" введите новый пароль, чтобы получить доступ ко всем режимам.

Информация!

- Пароли состоят из четырех символов.
- Для установки функции "No Password" (без пароля), используйте четыре пробела.

5.5 Описание режима "Калибровка/Тестирование"

Режим "Калибровка/Тестирование" позволяет:

- Установить отсечку малых расходов (LFCI).
- Выполнить калибровку выходного сигнала 4 и 20 мА.
- Выполнить самодиагностику расходомера.
- Использовать расходомер для тестирования контура.

Режим "Калибровка/Тестирование" может быть защищен паролем. Для получения доступа к данному режиму после первоначальной конфигурации может потребоваться ввести пароль. По дополнительным данным смотрите *Пароль* на странице 44.

Информация!

Если пароль утерян, обратитесь в местное представительство.

1 Cal/Tst				
	2 Calib			
		3 CalLFCI		
		3 Cal mA		
			4 Restore	
			4 Cal4mA	
			4 Cal20mA	
			4 CalDate	
			4 Initial	
	2 Test			
		3 Set Dig		
		3 Set mA		
		3 Set Hz		
		SelfTst		
	<-CANCEL SAVE->			

Таблица 5-13: Режим "Калибровка/Тестирование"

5.5.1 Калибровка

В разделе "2 Calib" войдите в "3 CalLFCI", чтобы позволить расходомеру автоматически настроить параметр "Low Flow Cut-In" (отсечку малых расходов).

При этом расходомер выберет минимальный уровень, при котором не обнаруживается сигнал в промежутке 20 секунд. Важно, чтобы при выполнении данной процедуры расход был равен нулю.

Информация!

Данная процедура может подтвердить выбор значения LFCI в главе "Настройка параметров наладки". Однако, если при выполнении процедуры будет выбрано другое значение, установленное Вами значение будет перезаписано.

В разделе "2 Calib" войдите в "3 Cal mA", чтобы выполнить калибровку выходного сигнала 4 и 20 мА.

- Параметр "4 Restore" восстанавливает заводскую калибровку.
- Параметры "4 Cal4mA" и "4 Cal20mA" позволяют выполнить калибровку для выхода 4-20 мА расходомера с точностью 0,005 мА относительно эталона.

Информация!

Расходомер был точно откалиброван на заводе. Повторная калибровка выхода обычно не требуется, если только он не был переностроен относительно другого эталона.

- В разделе "4 CalDate" при необходимости введите дату последней калибровки.
- В разделе "4 Initial" при необходимости введите инициалы сотрудника, выполнившего последнюю калибровку.

5.5.2 Тестирование

В разделе "2 Test" можно выполнить самодиагностику расходомера и использовать расходомер для тестирования контура.

Тестирование контура

Расходомер может быть использован для проверки и/или калибровки другого оборудования в контуре управления, такие как индикаторы, контроллеры и регистраторы. Для этого настройте токовый выход (3 Set mA), импульсный выход (3 Set Hz), или дискретный выход (3 SetDig) на любое значение в рамках диапазона расходомера.

Тестирование расходомера

Параметр проведения самодиагностики (3 SelfTst) проверяет работу расходомера путем подачи на вход электронного модуля периодического сигнала известной частоты от внутреннего генератора. Частота этого сигнала, в свою очередь, измеряется и сравнивается с этим внутренним сигналом.

Информация!

После самодиагностики рекомендуется выполнить очистку счетчиков. По дополнительным данным смотрите Режим настройки счетчиков на странице 49.

5.6 Сообщения об ошибках

В данном разделе описаны сообщения об ошибках, которые могут отображаться на дисплее, и действия, которые требуется предпринять для их исправления. Некоторые сообщения появляются периодически, при этом отображаемое измеренное значение расхода является достоверным. Расходомер генерирует предупреждение при приближении к установленным пределам.

Сообщение Пояснение		Действия по устранению	
Override	Функционирование расходомера находится под контролем внешнего устройства (другого конфигуратора или системы управления).	Примечание - Это информационное сообщение о том, что внешнее устройство контролирует расходомер.	
W: Input xxxxxxx	Предупреждение: Входное измеренное значение или вычисление превысило нормальный предел и находится в области предупредительной сигнализации. Измеренное или вычисленное значение отображается во второй строке сообщения.	 Проверьте температуру измеряемой среды, чтобы убедиться, что она соответствует температурным пределам первичного преобразователя. Проверьте необработанную частоту, 	
B: Input xxxxxxx	Плохой выходной сигнал: Аналогично вышеуказанному, однако в данном случае выходной сигнал приближается к границе предела. Данная ошибка отрицательно сказывается на всех измерениях.	чтобы определить, находится ли она за пределами для расходомера данного типоразмера.	
W: Input Total	Предупреждение: Значения счетчика (импульсов, полезной или суммарной энергии) могут быть некорректными из-за кратковременной потери питания.	Обнулите счетчик. Счетчик импульсов и счетчик полезной энергии могут быть обнулены независимо друг от друга. При обнулении счетчика суммарной энергии, также происходит обнуление счетчика импульсов и счетчика полезной энрегии.	
FcErr E:0xxxx	Не все внутренние функции успешно выполнены.	Если данное сообщение появилось при запуске, то неверно выполнена конфигурация. Повторно проверьте конфигурацию. При повторном возникновении ошибки повторно введите модель.	

Таблица 5-14: Сообщения об ошибках функционирования

Сообщение	Пояснение	Действия по устранению
WrProtct	Перемычка защиты от записи находится в положении "защита" или отсутствует. Конфигурацию нельзя изменить, если перемычка не находится в положении "запись".	Установите перемычки защиты от записи или переместите ее в положение "запись". По дополнительным данным смотрите <i>Блокираторы крышки</i> на странице 32.
Cfg Err MsCode	Введен некорректный номер модели.	Введите корректный номер модели.
No Pulse Hardware	Введен некорректный номер модели. Номер модели был введен для расходомера с импульсным выходом. Модуль электроники не оснащен платой с импульсным выходом.	
Bad URV URV=URL	Введенное значение верхнего предела измерения (URV) превышает верхнюю границу диапазона (URL) расходомера данного типоразмера.	Нажмите "Ввод", чтобы изменить значение верхнего предела измерения (URV) на значение верхней границы диапазона (URL). Убедитесь, что значение "Flowing Density" (плотность измеряемой среды) корректно.
Bad URV URV=Min	Введенное значение верхнего предела измерения (URV) меньше минимально допустимого значения.	Нажмите "Ввод", чтобы изменить значение верхнего предела (URV) на значение верхней границы диапазона (URL). Убедитесь, что значение "Flowing Density" (плотность измеряемой среды) корректно. ①

Сообщение	Пояснение	Действия по устранению
FcErr E:0xxxxx Не все внутренние функции успешно выполнены.		Просмотрите входы, связанные с последней редактированной функцией прибора. Если это не устранит проблему, введите заново код модели.

Таблица 5-15: Сообщение об ошибках конфигурации

① Минимальное значение верхнего предела измерений (URV) равно утроенному значению (3х) отсечки малых расходов (LFCI). Для применений, когда значение верхнего предела измерений (URV) находится на минимальном уровне относительно номинального диапазона измерений расходомера, данное сообщение может появляться в случае нарушения данного ограничения. Это может происходить в результате уменьшения значения верхнего предела диапазона (URV), увеличения отсечки малых расходов (LFCI), или уменьшения значения плотности измеряемой среды (соответственно – увеличения значения эначения отсечки малых расходов (LFCI).

5.7 Настройка перемычки защиты от записи

Ваш преобразователь сигналов оснащен функцией защитой от записи, которая соответствует требованиям защиты ISAS84.01- 1986 для использования в системах останова. Это значит, что можно предотвратить запись данных с локального дисплея или удаленной электроники на модуль электроники. Защита от записи устанавливается путем перемещения перемычки, которая находится в отсеке электроники за дисплеем. Чтобы активировать защиту от записи, снимите дисплей и снимите перемычку или установите ее в положение «защита». В позиции «запись» запись в определенные функции может быть ограничена паролем. По дополнительным данным смотрите *Пароль* на странице 44.

Рисунок 5-2: Положение перемычки защиты от записи

- ① Контакты защиты от записи
- Перемычка в положении "защита"
- ③ Перемычка в положении "запись"

5.8 Работа с HART-коммуникатором

5.8.1 Описание параметров

Перекрестные ссылки	Параметр	Пояснение			
Уровень меню 1	Уровень меню 1				
1 Status	Информация о статусе	Путь для просмотра статуса разных параметров устройства.			
1 Setup	Детальная настройка	Путь для детального просмотра параметров настройки.			
	Настройка прибора	Путь для просмотра всех других параметров.			
1TotGrd	Операции счетчика суммарной энергии	Процедура запуска, остановки или обнуления счетчика суммарной энергии.			
1 Measure	Значение счетчика суммарной энергии	Отображение значения счетчика суммарной энергии.			
	Значение счетчика полезной энергии	Отображение значения счетчика полезной энергии.			
1 View	Обзор	Путь для обзора параметров и настроек расходомера.			
	Версии	Путь для конфигурирования различных версий.			

Уровень меню 2

2 Calib	Калибровка	Путь к выполнению точной настройки цифро-аналогового преобразования (D/A) или масштабированной точной настройки D/A.
2 CalDate / 4 Cal Date	Дата калибровки	В разделе "1 View" отображается дата последней калибровки. В разделе "1 Cal/Tst" введите дату последней калибровки.
2 CalName / 4 Initial	Имя поверителя	В разделе "1 View" указано имя поверителя, выполнившего последнюю калибровку. В разделе "1 Cal/Tst" введите дату и имя поверителя, выполнившего последнюю калибровку.
2 Tags	Информация о приборе	Путь для конфигурации параметров описания устройства.
2 Reason	Причина возникновения ошибки	Указан код причины возникновения ошибки.
2 New Tube	Конфигурация измерительной трубы	Путь для конфигурации параметров измерительной трубы.
2 HartAdr / 4 PolAdr	Адрес HART-устройства	В разделе "1 View" указан сетевой адрес. В разделе "1 Setup" укажите сетевой адрес в диапазоне от 0 до 15. Адрес отличный от нуля используется для многоточечных подключений.
2 HartDes / 3 HrtDes	Описание НАRТ- устройства	В разделе "1 View" указан дескриптор. В разделе "1 Setup" введите дескриптор (максимум 16 символов).
2 HartMsg	Сообщение HART- устройства	В разделе "1 View" отображено сообщение.
2 Flow	Технологический параметр HART- устройства	Сопоставьте технологический параметр с расходом, массовым / объемным расходом.
2 HRTTag / 3 HRTTag	Технологическая позиция HART- устройства	В разделе "1 View", можно просмотреть номер технологической позиции. В разделе "1 Setup" введите номер технологической позиции (максимум 8 символов).
2 Test	Тест контура	Процедура по использованию расходомера как источника для калибровки с целью проверки другого оборудования в контуре.
2 MeaStat	Состояние измерения	Путь для просмотра состояния измерений разных параметров измерения.

5 Эксплуатация

Перекрестные ссылки	Параметр	Пояснение
2 Pipe	Измерительные элементы	Путь для конфигурации параметров измерительных элементов.
2 Model / 3 Model	Кодовое обозначение модели	В разделе "1 View" указано кодовое обозначение модели. В разделе "1 Setup" введите кодовое обозначение модели.
2 Total	Операции счетчика полезной энергии	Процедуры запуска, остановки или обнуления счетчика полезной энергии.
2 Output	Конфигурация выхода	Путь для конфигурации параметров выхода.
2 Passwd	Пароль	Для входа в меню расширенных настроек, введите пароль.
2 SW Rev	Версия программного обеспечения	Указана версия программного обеспечения.
	Дополнительная версия программного обеспечения	Указана дополнительная версия программного обеспечения.
2 HrtTag / 3HrtTag	Технологическая позиция	В разделе "1 View", можно просмотреть номер технологической позиции. В разделе "1 Setup" введите номер технологической позиции (максимум 8 символов).
2 Total	Единицы измерения счетчика	Путь для конфигурации параметров счетчика.
	Операции счетчика	Путь для просмотра, запуска, останова или обнуления счетчиков.
2 Tuning	Наладка	Путь для конфигурации параметров наладки.

Уровень меню 3

3 VisEGU	Единица измерения абсолютной вязкости	Выберите единицы измерения вязкости из перечня.
3 mA Out -> Status	Статус аналогового выхода	Отображение статуса аналогового выхода
3 mA Out ->Value	Значение аналогового выхода	Отображение значения аналогового выхода
3 FlwMap	Отображение значения аналогового выхода/технологическог о параметра	Отображение назначенной функции "Volume Flow", "Mass Flow", "BVolFlow" или "Velocity".
3 FlwURV	Верхний предел диапазона (URV) аналогового выхода/технологическог о параметра	Отображение верхнего диапазона (URV) аналогового выхода/технологического параметра
3 SetLFCI	Автоматическая настройка отсечки малых расходов	Процедура автоматической настройки отсечки малых расходов.
3 Bas Den	Основная плотность	В разделе "1 Setup" установите основную плотность в указанных единицах измерения плотности. Данное значение используется только для вычисления основных объемов.
3 Custom	Смещение пользованельского значения К-фактора	В разделе "1 Setup" укажите пользовательское значение К-фактора (в процентах). В разделе "1 Status" укажите пользовательское значение К-фактора.
3 Label	Индекс пользовательского технологического параметра	Введите индекс для единицы измерения пользовательского технологического параметра.

www.krohne.com

Перекрестные ссылки	Параметр	Пояснение
3 Offset	Смещение пользовательского технологического параметра	Введите любое смещение.
3 Cal mA	Корр. АЦП	Процедура точной настройки выходных значений 4 и 20 мА расходомера на соответствие показаниям стандартного измерительного устройства на предприятии.
3 DenEGU	Единицы измерения плотности	В разделе "Detailed Setup" выберите из перечня единицы измерения плотности. В разделе "Review" указаны единицы измерения плотности.
3 SetDig	Дискретный выход	Путь для конфигурации дискретного выхода.
3 Velcty	Скорость потока	Отображение значения скорости потока.
3 Name	Название измеряемой среды	В разделе "1 Setup" укажите название измерительной среды. В разделе "Review" указано название измерительной среды.
3 FldTyp (Read Only)	Тип измерительной среды	В разделе "1 Setup" будет указан тип измеряемой среды.
3TotGrd	Счетчик суммарной энергии	В разделе "Process Variables" указано значение счетчика суммарной энергии. В разделе "1 Setup" указан путь для конфигурации отображения счетчика суммарной энергии и единицы измерения.
3 Coms	Выход HART	Путь для конфигурации выхода HART.
3 KCor	Скорректированное значение К-фактора.	В разделе "1 Status" указано скорректированное значение К-фактора.
3 K Ref / 4 K Ref	К-фактор	В разделе "1 Status" указано значение К-фактора. В разделе "1 Setup" укажите К-фактор.
3 Lfci (только для чтения) / 3 CalLFCI	Отсечка малых расходов	В разделе "1 Setup" указано значение отсечки малых расходов. В разделе "1 Cal/Tst" может быть автоматически откалибровано значение отсечки малых расходов.
3 Display	Локальный дисплей	Путь для конфигурации локального дисплея.
3 BoreSch	Сортамент трубы	В разделе "1 Setup" выберите сортамент трубы из предложенного перечня.
3 TotNet	Счетчик полезной энергии	В разделе "Process Variables" указаны значения счетчика полезной энергии. В разделе "Detailed Setup" указан путь для конфигурации отображения счетчика суммарной энергии и единиц измерения.
3 Fail	Код сигнализации выходных параметров	В разделе "1 Setup" можно сконфигурировать установку выхода на верхнее или нижнее значение шкалы при возникновении неисправности.
3 Pipe	Трубопровод	Путь для конфигурации параметров трубопровода.
3 FlwMap	Отображение значения импульсного выхода/технологическог о параметра	Отображение установленного технологического параметра для функции "Volume Flow" (объемный расход), "Mass Flow" (массовый расход), "BVolFlow" (базовый объемный расход) или "Velocity" (скорость).
3 FlwURV	Верхний предел диапазона (URV) импульсного выхода/технологическог о параметра	Отображение верхнего предела диапазона (URV) импульсного выхода/технологического параметра.
3 FlwDen	Рабочая плотность	В разделе "1 Setup" укажите плотность потока в указанных единицах измерения плотности.

5 Эксплуатация

Перекрестные ссылки	Параметр	Пояснение
3 Flw Tmp	Рабочая температура	В разделе "Detailed Setup" укажите температуру потока в указанных единицах измерения температуры. В разделе "Review" укажите рабочую температуру.
3 Visc	Рабочая вязкость	В разделе "1 Setup" укажите базовую вязкость в единицах измерения вязкости.
3 Add Drop	Импульс фронт/спад	В разделе "1 Setup" сконфигурируйте компенсацию импульса (формирования импульса) на значение "On" (вкл.) или "Off" (выкл.).
3 Pulse	Операции счетчика импульсов	Процедура запуска, отсановки или обнуления счетчика импульсов.
	Импульсный выход	Путь для конфигурации импульсного выхода.
3 Pulse (2 MeaStat)	Импульсный выход	Отображение цены импульса.
	Статус счетчика импульсов	Отображение статуса счетчика импульсов.
3 mA Out	Технологический параметр аналогового выхода	Отображение технологического параметра аналогового выхода.
3 FlwDmp	Технологический параметр демпфирования	Введите время демпфирования, если оно отличается от указанного.
3 FlwMap	Отображение технологического параметра	Отображение технологического параметра функции "Volume Flow" (объемный расход), "Mass Flow" (массовый расход), "BVolFlow" (базовый объемный расход) или Velocity (скорость).
3 FlwEGU	Единицы измерения технологического параметра	В разделе "1 Setup" выберите из перечня единицы измерения технологического параметра. В разделе "Detailed Setup" выберите из перечня единицы измерения технологического параметра.
3 FlwURV	Верхний предел диапазона (URV) технологического параметра	В разделе "1 Setup" отображается верхний предел диапазона (URV), который может быть сконфигурирован.
3 RdCorr	Коррекция числа Рейнольдса	Отображение статуса коррекции числа Рейнольдса (on (вкл.)/off (выкл.)).
	Число Рейнольдса	Конфигурация функции коррекции числа Рейнольдса "On" (вкл.) или "Off" (выкл.).
3 SelfTst	Самодиагностика	Процедура самодиагностики устройства.
3 Set mA	Установка значения аналогового выхода	Установка значения аналогового выхода на 4 мА, 20 мА или другое значение.
3 Set DIG	Установка значения дискретного выхода	Процедура установки значения дискретного выхода на значения, замещающие технологический параметр, значение счетчика полезной энергии, значение счетчика суммарной энергии или частоты вихреобразования.
3 New	Установка параметров измерительной среды по умолчанию	Путь для настройки параметров по умолчанию для выбранного типа измеряемой среды (жидкость, газ или пар).
3 Set Hz	Установка значения импульсного выхода	Процедура установки значения импульсного выхода на 0 Гц, максимальной частоты, или другого значения.
3 Special	Специальные параметры	Путь для конфигурации специальных параметров измерительной трубы.
3 TmpRGU	Единицы измерения температуры	В разделе "Detailed Setup" выберите из перечня единицы измерения температуры. В разделе "Review" указаны единицы измерения температуры.
3 Custom	Диаметр трубы	Введите пользовательский диаметр измерительной трубы в метрах.

Перекрестные ссылки	Параметр	Пояснение
3 VelEGU	Единицы измерения скорости	В разделе "1 Setup" выберите из перечня единицы измерения.

Уровень меню 4

4 HiPwd	Пароль администратора	Установка пароля администратора.
4 If EGU (Customer Label)	Индекс пользовательской единицы измерения плотности	Введите индекс для пользовательской единицы измерения плотности.
4 Offset	Смещение пользователькой единицы измерения плотности	Введите любое смещение.
4 Slope	Отклонение пользовательской единицы измерения технологического параметра	Введите коэффициент преобразования для пользовательской единицы измерения технологического параметра.
4 Cycle	Цикл отображения	Укажите, будет ли перечень измерений, настроенных для отображения, сканироваться автоматически или вручную.
4 Show	Настройка отображения	Установите параметры для отображения на дисплее.
4 Map	Тип счетчика суммарной энергии	Настройка типа счетчика "Grand Total" на "Volume" (объем), "Mass" (масса) или "BVolume" (базовый объем).
4 EGU	Единицы измерения счетчика суммарной энергии	В разделе "Detailed Setup" выберите из перечня единицы измерения счетчика суммарной энергии. В разделе "Review" указаны единицы измерения счетчика суммарной энергии.
4 K EGU	Единицы измерения К- фактора	В разделе "1 Setup" указан путь для выбора единицы измерения К-фактора.
4 Setting	Индекс отсечки малых расходов	Отображения номера отсечки малых расходов в перечне.
4 LfUFac	Заводская настройка отсечки малых расходов	Установка заводского значения отсечки малых расходов.
4 Мар	Тип счетчика полезной энергии	Настройка типа счетчика "Net Total" на "Volume" (объем), "Mass" (масса) или "BVolume" (базовый объем).
4 EGU	Единицы измерения счетчика полезной энергии	В разделе "Detailed Setup" выберите из перечня единицы измерения счетчика полезной энергии. В разделе "Review" указаны единиц измерения счетчика полезной энергии.
4 Preambl	Количество преамбул запроса	В разделе "1 Setup" сконфигурируйте количество преамбул, которые будут отправлены в ответном сообщении с расходомера на мастер-устройство.
4 Config	Конфигурация трубопровода	В разделе "Detailed Setup" выберите из перечня тип конфигурации трубопровода. В разделе "Review" указан тип конфигурации трубопровода.
4 Show1st	Первый отображаемый параметр	Выберите первый отображаемый параметр.
4 Frequ	Максимальная частота импульса	В разделе "1 Setup" выберите величину частоты верхнего предела измерений, соответствующую наивысшей частоте 10, 100 или 1000 Гц.
4 Pulse	Режим импульса	В разделе "1 Setup" выберите тип импульсного выхода "Rate" (частотный), "Total" (числоимпульсный), "Raw" (необработанный) или "Off" (выкл.). В разделе "1 View" укажите тип импульсного выхода.

Перекрестные ссылки	Параметр	Пояснение
4 Factor	Разрешающая способность импульса	Введите значение количества измеряемой среды в выбранных единицах измерения, соответствующее одному импульсу.
4 EGU	Единицы измерения счетчика импульсов	Выберите из перечня единицы измерения.
4 Pwidth	Ширина импульса	Выберите ширину импульса 0,5, 5 или 50 мс.
4 TubAlp	Коэффициент теплового расширения трубы	Введите коэффициент теплового расширения (альфа) в м/м/°К.
4 Tub Dia	Диаметр трубы	Введите пользовательский диаметр измерительной трубы в метрах.
4 Updist	Расстояние до возмущения вверх по потоку	В разделе "1 Setup" введите расстояние до первого возмущения вверх по потоку, выраженного в диаметрах трубы.
4 LoPwd	Пользовательский пароль	Пользовательский пароль

Уровень меню 5

5 FlwVol	Отображение	Отображение технологического параметра на "Volume Flow" (объемный расход).
5 Format	Формат отображения	Установите формат отображения (чтобы определить количество десятичных запятых, которые используются дл отображения определенного значения).
5 TotGRD	Счетчик суммарной энергии	Счетчик суммарной энергии
5TotNet	Счетчик полезной энергии	Счетчик полезной энергии
p/CuFt	p/CuFt	Установите единицы измерения К-фактора на "pulses per cubic foot" (импульсы на кубический фут).
p/l	p/l	Установите единицы измерения К-фактора на "pulses per liter" (импульсы на литр).

Таблица 5-16: Параметры
Параметры коммуникатора

Параметр	Пояснение
Analog Output	Путь для конфигурации аналогового выхода.
AO/PV LRV	Отображение нижнего предела измерений аналогового выхода/технологического параметра.
Basic Setup	Путь для конфигурации настройки базовых параметров.
Dev ID	Отображение идентификационного номера устройства
Device Err Status	Отображение статуса ошибки устройства.
Device Warn Status	Отображение статуса предупреждения устройства.
Diag/Service	Путь для отображения параметров статуса тестирования и калибровки.
Fld Dev Rev	Отображение версии программного обеспечения вихревого расходомера.
Hardware Rev	Отображение уровня версии аппаратного обеспечения вихревого расходомера.
LFCI Adjust Factor	Ввод пользовательского коэффициента отсечки малых расходов.
Manufacturer	Отображение имени изготовителя.
PO/PV LRV	Отображение нижнего предела измерений импульсного выхода/технологического параметра.
Process Parameters	Путь для конфигурации технологических параметров.
Process Variables	Путь для просмотра значений технологических параметров.
Pulse Map	Отображение функции, установленной для импульса: "Volume Flow" (объемный расход), "Mass Flow" (массовый расход), "BVolFlow," (базовый объемный расход) или "Velocity" (скорость).
PV	Отображение значения технологического параметра.
PV % Rnge	Отображение значения технологического параметра в процентах.
PV Configuration	Путь для конфигурации параметров технологических параметров.
PV Damp	Отображение времени демпфирования.
PV Min Span	Отображение минимального диапазона.
PV USL	В разделе "Basic Menu" указан верхний предел первичного преобразователя. В разделе "Review" указан верхний предел первичного преобразователя.
Scaled D/A Trim	Процедура настройки верхнего и нижнего значения токового выхода расходомера в соответствии с выходным сигналом стандартного измерительного устройства на предприятии.
Serial Number	В разделе "Detailed Setup" введите серийный номер. В разделе "Review" указан серийный нмоер.
Universal Rev	Отображается уровень ревизии универсального набора команд.
Variable Map	Назначение выходного сигнала в качестве первичного, вторичного, третичного или четвертичного выходного сигнала.
Velocity Status	Отображение статуса скорости.
Vortex Freq	Отображение частоты вихреобразования.

Таблица 5-17: Параметры коммуникатора

5.8.2 Интерактивное меню

1. De\	evice Setup					
	1. Process Variables					
	1. PV					
	2. PV % Rnge					
		3. PV AO				
		4. Net Total (SV)				
		5. Grand Total (TV)				
		6. Vortex Freq (QV)				
	2. Dia	g/Service				
		1. Totals Operations	А			
		2. Auto LFCI				
		3. Self Test				
		4. Loop Test	В			
		5. Calibration	С			
		6. Measurement Status	D			
		7. Detail Status	Е			
	3. Bas	sic Setup				
		1. Model Code				
	2. Set Fluid Defaults F					
		3. K Factor Units	G			
		4. K Factor				
		5. PV Map				
		6. PV Units				
		Если единицы измерения технологического парамет (PV Units) установлены на значение "Custom" (Пользовательские), укажи Custom PV Label Custom PV Offset Custom PV Slope	ра ите			
		7. PV URV				
		8. PV Damping				
		9. Tag				

	4. Det	ailed Setup		
		1. Measuring Elements	Н	
		2. Flowtube Config	J	
		3. Tuning	К	
		4. Output Config	L	
		5. Device Info	М	
2. PV				
3. PV	AO			
4. PV	URV			
5. LFC	CI			
6. LFCI Index				
7. PV	USL			

А	1. Pulse Operations	Н	1. Process Variables	
	2. Net Total Value		1. PV	
	3. Net Operations		2. PV % Rnge	
	4. Grand Total Value		3. PV AO	
	5. Grand Operations		4. Net Total	
В	1. Set Digital Out		5. Grand Total	
	2. Set Analog Out		6. Vortex Freq	
	3. Set Pulse Out		2. PV Configuration N	
С	1. D/A Trim		3. Total Units P	
	2. Scaled D/A Trim		4. Process Parameters Q	
	3. Date		5. Piping R	
D	1. Flow Velocity	J	1. Model Code	
	2. Velocity Status		2. K Factor Units	
	3. K Factor		3. K Factor	
	4. K Corrected		4. Serial Number	
	5. K Corrected Status		5. Special	
	6. AO Status		1. Tube Diameter	
	7. AO Value		2. Tube Alpha	
	8. Pulse Out		3. LFCI Adjust Factor	
	9. Pulse Status	К	1. Reynolds Correction	
	Process Viscosity		2. Pulse Add/Drop	
	Viscosity Status		3. LFCI	
E	1. Error Reason	М	1. Manufacturer	
	2. Device Err Status		2. Tag	
	3. Device Warn Status		3. Descriptor	
F	1. Liquid		4. Message	
	2. Gas		5. Date	
	3. Steam		6. Revisions	
G	1. p/l			
	2. p/CuFt			

5 Эксплуатация

1	1 Digital Output		P	1	Mating Pine	
L			N		- -	
	1. Variable Map				Данная ветка меню недоступна для специальных заказов или для сортамента 160.	
	2. Set Digital Out				Schedule 10	
	2. Analog Output	S			Schedule 40	
	3. Pulse Output	Т			Schedule 80	
	4. HART Output				PN16	
	1. Poll Addr				PN40	
	2. Num Req Preams				PN64	
	5. O/P Alarm Code				PN100	
	6. Local Display				Sanitary	
	1. Show			2.	Piping Config	
	2. Primary Display				Straight	
	3. Display Cycle				1 L paral to shed	
Ν	1. PV Map				1 L perp to shed	
	2. PV Unit				2 L cls paral shed	
	Если единицы измерения технологического парамет (PV Units) установлены на значение "Custom" (Пользовательские), укажи Custom PV Label Custom PV Offset Custom PV Slope	ра пте				
	3. PV URV				2 L cls perp shed	
	4. PV Damping				2 L 5 dia paral	
	5. Velocity Units				2 L 5 dia perp	
P	1. Net Total				Reducer	
	1. Net Total Map		S	1.	AO/PV Map	
	2. Net Total Units			2. AO/PV URV		
	2. Grand Total			3.	AO/PV LRV	
	1. Grand Total Map			4.	Set Analog Out	
	2. Grand Total Units			5.	Calibration	C

76

Q	1. Set Fluid Defaults	Т	Если режим импульса установлен на "Off" (выкл.)
	2. Fluid Name		1. Pulse Mode ¹
	3. Temperature Units		Если режим импульса установлен на "Raw" (необработанный)
	4. Process Temp		1. Pulse Mode ¹
	5. Density Units Если единицы измерения плотности установлены на значение "Custom" (Пользовательский), укажите Custom Dens Label Custom Dens Offset Custom Dens Slope		1 1. Off 2. Raw 3. Rate 4. Total
	6. Process Density		
	7. Base Density		
	8. Abs Viscosity Unit		
	9. Process Viscosity		

5 Эксплуатация

Т	Если режим импульса установлен на "Rate" (частотный)	U	O/P Alarm Code
	1. Pulse Mode ¹		PV Damp
	2. PO/PV Map		Pulse Add/Drop
	3. PO/PV URV		Fluid Name
	4. PO/PV LRV		Fluid Type
	5. Pulse Max Freq		Temperature Units
	6. Set Pulse Out		Process Temperature
	Если режим импульса установлен на "Total" (числоимпульсный)		Density Units
	1. Pulse Mode		Process Density
	2. Pulse Map		Base Density
	3. Pulse Width		Abs Viscosity Units
	4. Pulse Total EGU		Process Viscosity
	5. Pulse Resolution		Mating Pipe
	6. Set Pulse Out		Piping Config
U	Model Code		Upstream Distance
	Serial Number		Custom K Bias
	K Factor		Manufacturer
	PV USL		Dev ID
	PV Min Span		Tag
	LFCI		Descriptor
	LFCI Index		Message
	PV Units		Date
	Net Total Units		Universal Rev
	Grand Total Units		Fld Dev Rev
	AO/PV Map		Software Rev
	AO/PV URV		Software Sub-Revision
	AO/PV LRV		Hardware Rev
	Pulse Mode		Poll Addr
	PO/PV Map*		Num Req Preams
	PO/PV URV*		
	PO/PV LRV*		
	Pulse Max Freq*		
	Pulse Map**		
	Pulse Width**		
	Pulse Total EGU**		
	Pulse Resolution**		

* Если режим импульса установлен на значение "Rate" (частотный) ** Если режим импульса установлен на значение "Total" (числоимпульсный)

6.1 Доступность запасных частей

Изготовитель придерживается основополагающего принципа, согласно которому функционально оправданный набор необходимых запасных частей для каждого измерительного прибора или всякого важного дополнительного устройства должен быть доступен для заказа в период, равный 3 годам после поставки последней партии данного типа оборудования.

Настоящая норма распространяется исключительно на запасные части, которые подвергаются износу при нормальных условиях эксплуатации.

6.2 Доступность сервисного обслуживания

Производитель предлагает целый ряд услуг по поддержке заказчика в период после истечения гарантийного срока. Под этими услугами подразумевается ремонт, техническая поддержка и обучение.

Информация!

Более подробную информацию можно получить в ближайшем региональном представительстве фирмы.

6.3 Возврат прибора изготовителю

6.3.1 Общая информация

Данный прибор был тщательным образом изготовлен и протестирован. При условии, что в ходе монтажа и в период эксплуатации соблюдаются положения настоящего руководства по эксплуатации, вероятность возникновения каких-либо проблем незначительна.

Внимание!

Тем не менее, в случае необходимости возврата прибора для обследования и ремонтных работ, просьба в обязательном порядке обратить внимание на следующие положения:

- Согласно нормативным актам по охране окружающей среды и положениям законодательства по гигиене труда и технике безопасности на производстве, производитель уполномочен производить обработку, диагностику и ремонт возвращённых устройств только в случае, если таковые эксплуатировались на рабочих продуктах, не представляющих опасности для персонала и окружающей среды.
- Это означает, что изготовитель вправе производить сервисное обслуживание данного устройства исключительно при условии, если к комплекту сопроводительной документации приложен приведённый далее сертификат (смотрите следующий раздел), подтверждающий безопасность эксплуатации прибора.

Внимание!

Если прибор эксплуатировался на токсичных, едких, радиоактивных, легковоспламеняющихся, либо вступающих в опасные соединения с водой средах, просим:

- проверить и обеспечить, при необходимости, за счёт проведения промывки или нейтрализации, очистку всех полостей прибора от таких опасных веществ,
- приложить к комплекту сопроводительной документации на прибор сертификат, подтверждающий безопасность эксплуатации устройства, и указать в нем используемый рабочий продукт.

6.3.2 Образец бланка, прилагаемого к прибору в случае возврата (для снятия копии)

Осторожно!

Во избежание любого риска для наших сотрудников по сервисному обслуживанию доступ к данному заполненному бланку должен быть обеспечен без необходимости открытия упаковки с возвращённым прибором.

Организация:		Адрес:		
Отдел:		Ф.И.О.:		
Тел.:		Факс и/или Email:		
№ заказа изготовителя или серийный №:				
Данный прибор эксплуатировался на сле,	дующе	ей рабочей среде:		
Данная среда:	ради	оактивна		
	встуг	пает в опасные соединения с водой		
	токси	ична		
	явля	яется едким веществом		
	огнес	опасна		
	Подт таких	верждаем, что все полости прибора проверены и не содержат к веществ.		
Под		тверждаем проведение промывки и нейтрализации всех полостей ройства.		
Настоящим подтверждаем, что при возвр представляют опасности для человека ил	ате пр и окру	рибора любые оставшиеся в нём вещества и субстанции не ужающей среды.		
Дата:		Подпись:		
Печать:				

6.4 Утилизация

Официальное уведомление!

Утилизацию следует осуществлять в соответствии с действующими в государстве законодательными актами.

Раздельный сбор отработанного электрического и электронного оборудования в Европейском Союзе:

Согласно директиве 2012/19/ЕС оборудование мониторинга и контроля, имеющее маркировку WEEE и достигшее окончания срока службы, **не допускается утилизировать вместе с другими отходами**.

Пользователь должен доставить отработанное электрическое и электронное оборудование в пункт сбора для его дальнейшей переработки или отправить на локальное предприятие или в уполномоченное представительство компании.

7.1 Принцип действия

Вихревые расходомеры предназначены для измерения расхода газов, пара и жидкостей в полностью заполненных трубопроводах.

Принцип измерения основывается на эффекте вихревой дорожки Кармана. В первичном преобразователе находится тело обтекания, вокруг которого образуются завихрения, регистрируемые расположенным позади сенсорным модулем. Частота f образования вихрей пропорциональна скорости потока v. Безразмерное число Струхаля S описывает соотношение между частотой вихреобразования f, шириной тела обтекания b и средней скоростью потока v:

$$f = \frac{S \cdot v}{b}$$

Частота вихреобразования регистрируется в первичном преобразователе прибора и затем анализируется в преобразователе сигналов.

7.2 Технические характеристики

Информация!

- Приведенные ниже данные распространяются на общие случаи применения. Если требуются данные, имеющие отношение к конкретной рабочей позиции, следует обратиться в региональное представительство нашей фирмы.
- Дополнительная информация (сертификаты, специализированный инструментарий, программное обеспечение...) и полный пакет документации на изделие доступны для загрузки бесплатно с Интернет-сайта (в разделе "Downloadcenter" - "Документация и ПО").

Измерительная система

Область применения	Измерение расхода электропроводных и неэлектропроводных жидкостей, газов и пара
Принцип действия / измерения	Вихревая дорожка Кармана

Измеряемый параметр

Первичная измеряемая величина	Количество отделившихся вихрей
Вторичная измеряемая	Объёмный расход при рабочих условиях, объёмный расход, приведённый к
величина	стандартным условиям, и массовый расход

Преобразователь сигналов

Исполнения	Компактная версия (преобразователь сигналов смонтирован непосредственно на первичном преобразователе)
	Раздельное исполнение (электрическое подключение к первичному преобразователю выполняется через сигнальный кабель) Длина кабеля: ≤ 15 м / 50 фут

Первичный преобразователь

Стандартно	Фланцевое исполнение
	Сэндвич-исполнение
Опционально	Сдвоенный прибор фланцевого исполнения (дублирование измерений)

Дисплей и пользовательский интерфейс

Локальный дисплей	16-символьный цифровой индикатор и конфигуратор
	Индикация: расход, данные счетчика или переключение между двумя параметрами
Языки интерфейса и дисплея	Английский
Формат передачи данных	Цифровая передача данных осуществляется в аналоговом (420 мА) и цифровом режиме со стандартом частотной манипуляции (FSK).
Диагностика	Онлайн-диагностика: Расходомер использует внутренние диагностические функции, включая проверку аппаратного обеспечения и валидацию внутреннего номера и базы данных. Проверка на наличие ошибок и диагностика кодов также интегрированы в коммуникационном протоколе. Данные виды диагностики выполняются при запуске и непрерывно в фоновом режиме.
	Офлайн-диагностика (самодиагностика): Конфигураторы позволяют выполнить самодиагностику с целью валидации электроники преобразователя сигналов. В данном виде тестирования используется внутренний частотный сигнал.

Безопасность	Перемычка защиты от записи: Перемычка защиты от записи обеспечивает дополнительную безопасность, позволяя пользователю предотвратить запись на локальный индикатор (конфигуратор) и с удаленного конфигуратора в электронику. Данная возможность защиты от записи соответствует требованиям безопасности ISA-584.01-1986.
	Защита паролем: Данная функция доступна в режиме локального дисплея/конфигуратора для обеспечения безопасной работы. Для обеспечения безопасности конфигурации предусмотрен второй уровень защиты.

Точность измерений

Условия поверки

Условия заводской калибровки	Среда: чистая вода
	Рабочая температура/температура окружающей среды: +20+30°С / +68+86°F
	Относительная влажность: 5090%
	Напряжение питания на токовом выходе: 24 ± 0,5 В пост.тока

Погрешность

Жидкости	±0,5% от измеренного значения (Re ≥ 30000)
	±1,0% от измеренного значения (20000 < Re < 30000)
	±2,0% от измеренного значения (10000 < Re < 20000)
Газы и пар	±1,0% от измеренного значения (Re \geq 20000)
	±2,0% от измеренного значения (10000 < Re < 20000)
Влияние рабочей температуры на К-фактор	На К-фактор, указанный на заводской табличке, влияет изменение диаметра измерительной трубы в зависимости от температуры. Эффект составляет -0,3% от расхода при повышении температуры на +55°С / +100°F. Расходомер автоматически пересчитает К-фактор потока при вводе рабочей температуры измеряемой среды в в базу данных.

Рабочие условия

Температура

Рабочая температура	+150+430°C / +302+806°F
Температура окружающей среды	Невзрывозащищенное исполнение: -20+80°С / -4+176°F
	Взрывозащищенное исполнение: в зависимости от типа защиты и температурного класса
	Искробезопасное исполнение ATEX: $T_a = -40+80^{\circ}C$ Взрывонепроницаемая оболочка по ATEX: $T_a = -20+80^{\circ}C$ Искробезопасное исполнение FM: $T_a = 80^{\circ}C$ Взрывозащищенное исполнение по FM: $T_a = -40+85^{\circ}C$ Искробезопасное исполнение по IECEX: $T_a = -40+80^{\circ}C$ Взрывонепроницаемая оболочка по IECEX: $T_a = -20+80^{\circ}C$
	Примечание: Пи эксплуатации при температуре ниже -29°С / -20°F, важно поддерживать минимальное напряжение цепи 15,75 В пост.тока для обеспечения возможности обмена данными с удаленным конфигуратором.

Давление

Давление измеряемой среды	Прибор предназначен, чтобы выдерживать давление в соответствии с ANSI/ASME B16.5 класса 150, 300, 600, 900 или 1500 в соответствии с EN 1092-1, PN16, PN40, PN63, PN100 или PN160.
Максимальное статическое давление	103,4 бар изб. / 1500 фунт/кв.дюйм изб. / 10340 кПа или согласно номинальному давлению фланца.

Характеристики рабочей среды

Плотность	Учитывается при расчёте параметров прибора.
Вязкость	< 10 c∏
Число Рейнольдса	> 10000

Пределы номинальной скорости потока

Нижний предел диапазона	6,0/ √ _{рf} м/с или 5,0/ √ _{рf} фут/с
Верхний предел диапазона	300/ √ _{Рf} м/с или 250/ √ _{Рf} фут/с
ρ _f - плотность измерительной среды в рабочих условиях	

Защита окружающей среды

Степень пылевлагозащиты	Корпус электроники: IP66 / NEMA4X
-------------------------	-----------------------------------

Условия монтажа

Прямой участок на входе	 ≥ 15 x DN без нарушения профиля потока; ≥ 20 x DN после сужения трубопровода, после одинарного отвода 90
	≥ 30 x DN после двойного отвода 2х90°
	≥ 40 x DN после двойного пространственного отвода 2х90°
	≥ 50 x DN после регулирующих клапанов
	 ≥ 2 DN перед струевыпрямителем ≥ 8 DN после струевыпрямителя
Прямой участок на выходе	\geq 5 x DN

Материалы

Корпус расходомера и тело обтекания	ОРТІЅШЯL 5080 в фланцевом исполнении: DN15DN100: корпус и фланцы изготовлены из нержавеющей стали 316 DN150DN200: корпус изготовлен из нержавеющей стали 316; фланцы изготовлены из нержавеющей стали 304 DN250DN300: корпус и фланцы изготовлены из нержавеющей стали 304
	OPTISWIRL 5080 в сэндвич-исполнении: Нержавеющая сталь 316 для всех типоразмеров или никелевый сплав CX2MW (аналогичный Hastelloy [®] C) до DN100
Корпус электроники и крышки корпуса	Литой алюминиевый сплав с низким содержанием меди с эпоксидным покрытием
Уплотнительные прокладки	Уплотнительные прокладки для первичного преобразователя высокотемпературного исполнения: уплотнительная прокладка из нержавеющей стали 316; заслонка потока из нержавеющей стали 316/графойл (grafoil)
	Уплотнительные прокладки крышек корпуса, горловина корпуса и клеммный блок: уплотнительные кольца из бутадиен-акрилонитрилового каучука
Двойной измерительный коллектор	Нержавеющая сталь CF8M

Технологические присоединения

DIN EN 1092-1	DN15300
ASME B16.5	3/412"
Подробная информация по доступным вариантам фланцев в зависимости от номинального давления представлена в разделе "Габаритные размеры и вес".	

Электрические подключения

Напряжение питания	15,542 В пост.тока; в зависимости от допусков и сертификатов по электрической безопасности	
	Искробезопасная цепь: макс. 30 В пост.тока При наличии сертификатов искробезопасности с питанием 24 В пост. тока требуется активный барьер.	
Кабельные вводы	1/2 NPT или M20	

Выходы

Демпфирование выходного сигнала	Демпфирование сглаживает выходной сигнал и оптимизирует время отклика расходомера на систему управления. Демпфирование - это экспоненциальный фильтр с выбираемой постоянной времени; его можно установить от 0 до 32 секунд. Восьмисекундный коэффициент демпфирования пройдет 64% изменения шага за этот период времени. Демпфирование применяется ко всем выходам, кроме выхода необработанных импульсов, где демпфирование не применяется к частоте вихреобразования.

Аналоговый выход

Общая информация	Значение расхода доступно в виде сигнала 420 мА, при этом значение 20 мА устанавливается в соответствии с настроенным расходом во всем диапазоне.
Тип	420 MA HART [®]
Ток питания	Максимум 22 мА пост.тока
Влияние напряжения питания	Менее 0,005% на вольт
Влияние температуры окружающей среды (только предусилитель)	При изменении температуры окружающей среды +28°С / +50°F в рабочих пределах. Нуль (4 мА): ±0,02% от максимального диапазона Диапазон (16 мА): ±0,1% от максимального диапазона
Время отклика (без демпфирования)	0,5 секунд или период образования вихрей для частоты менее 2 Гц.

HART®

	Аналоговый или цифровой многоточечный режим HART
Удаленный конфигуратор / коммуникатор	НАRТ-коммуникатор или конфигуратор для ПК
Скорость передачи данных	1200 бод
Расстояние для передачи данных (расчетное)	1800 м / 6000 фут
Обновление расхода/счетчиков	5 раз/с
Обновление измерений необработанного импульса	Частота вихреобразования

Дискретный выход

Общая информация	Цифровая информация накладывается на сигнал 420 мА при скорости 1200 бод
Ток питания	Максимум 10 мА пост.тока
Влияние напряжения питания	Влияние на точность отсутствует
Влияние температуры окружающей среды (только предусилитель)	±0,01% от измеренных значений от -40+80°С / -40+176°F
Время отклика (без демпфирования)	0,5 секунд или период образования вихрей для частоты менее 2 Гц.

Импульсный выход

Общая информация	Импульсный выход представляет собой 2-проводный транзисторный переключатель с внешним источником питания. Данный выход может быть сконфигурирован (выбор одного из трех типов импульсного выхода) при помощи любого устройства для конфигурации: необработанный, частотный и частотноимпульсный)		
	Необработанный импульс: Данная частота вихреобразования, напрямую проходящая через него, обеспечивает возникновение мгновенного, недемпфированного частотного выходного сигнала		
	Частотный импульс: Частота этого выхода представляет собой импульсный выход с коэффициентом заполнения 50% с частотным диапазоном 010, 0100 или 01000 Гц, пропорциональный нулевому расходу до полного диапазона расхода/верхнего предела диапазона.		
	Частотноимпульсный импульс: Частота этого выхода также представляет собой импульсный выход с коэффициентом заполнения 50%, который настроен на выдачу импульса, когда определенная объемная/суммарная единица протекает через первичный преобразователь.		
Характеристики	Изолированный 2-проводный транзисторный переключатель		
	Применяемое напряжение: 530 В пост. тока		
	Максимальное падение напряжения в состоянии "ON" (вкл.): 1,0 В пост. тока		
	Максимальный ток в состоянии "ON" (вкл.): 20 мА		
	Защита от обратной полярности		
	Защита от короткого замыкания		
	Подключается к нагрузочному и согласующему резистору		
Ток питания	Максимум 20 мА пост.тока		
Влияние напряжения питания	Влияние на точность отсутствует		
Влияние температуры окружающей среды (только предусилитель)	±0,01% от измеренных значений от -40+80°С / -40+176°F		
Время отклика	Необработанный импульс: частота вихреобразования		
(оез демпфирования)	Частотный или частотноимпульсный: 0,25 секунд или период образования вихрей для частоты менее 2 Гц		

Допуски и сертификаты

CE	Устройство соответствует нормативным требованиям директив EU. Производитель удостоверяет успешно проведённые испытания устройства нанесением маркировки CE.		
	Полная информация о директивах и стандартах EU, а также действующих сертификатах представлена в декларации СЕ или на веб-сайте производителя.		
Невзрывозащищённое исполнение	Стандартно		
Взрывоопасные зоны	·		
ATEX	Искробезопасная цепь: II 1G II 2D Ex ia IIC T4 Ga Ex tb IIIC T103°C Db		
	Компактное или раздельное исполнение (электроники и клеммной коробки)		
	Взрывонепроницаемый корпус: II 2/1 (1) G II 2D Ex db [ia Ga] ia IIC T4 Gb Ex tb IIIC T85°C Db		
	Компактное исполнение (электроника) и раздельное исполнение (корпус электроники)		
IECEx	Искробезопасная цепь: Ex ia IIC T4 Ga Ex tb IIIC T103°C Db		
	Взрывонепроницаемый корпус: Ex d [ia Ga] ia IIC T4 Gb Ex tb IIIC T85°C Db		
	Компактное исполнение (электроника) и раздельное исполнение (корпус электроники)		
FM (в процессе подготовки)	Искробезопасная цепь для класса I, II, III, кат. 1, группы A, B, C, D, E, F, G; Также зоны, одобренные AEx ia IIC		
	Взрывозащита с искробезопасной защитой присоединения первичного преобразователя для класса I, кат. 1, группы В, С, и D; Защита от воспламенения горючей пыли для класса II, кат. 1, группы E, F, и G; класса III, кат. 1		
Другие стандарты и сертис	рикаты		
Устойчивость к вибрации	Расходомер был испытан с ускорением до 3g - в результате физические повреждения, смещение калибровочных данных после завершения испытания и потеря связи отсутствуют.		
Электромагнитные и радиопомехи	Расходомеры соответствуют требованиям EN 61326-1.		

7.3 Габаритные размеры и вес

7.3.1 Габаритные размеры прибора фланцевого исполнения

Компактное исполнение - одиночное измерение

Стандартное исполнение (вид спереди и вид сбоку)

① = 96 мм / 3,77"

 2) = 124 мм / 4,9"
 3) = 154 мм / 6,1"
 При использовании цифрового дисплея, доступна увеличенная крышка

Номинальный	Номинальное	Внешний диаметр	Внутренний диаметр	С	
диаметр	давление фланца	[мм]			
DN15	PN40 ①	95	18,8	138	
	PN100	105	18,8	152	
DN25	PN40 ①	115	24,3	142	
	PN100	140	24,3	178	
	PN160	140	24,3	178	
DN40	PN40 ①	150	38,1	152	
	PN100	170	38,1	186	
	PN160	170	38,1	190	
DN50	PN40 ①	165	49,2	166	
	PN63	180	49,2	194	
	PN100	195	49,2	206	
	PN160	195	49,2	220	
DN80	PN40 ①	200	72,9	202	
	PN63	215	72,9	230	
	PN100	230	72,9	242	
	PN160	230	72,9	258	

Номинальный	Номинальное	Внешний диаметр	Внутренний диаметр	С	
диаметр	давление фланца	[мм]			
DN100	PN40 ①	235	97,2	222	
	PN63	250	97,2	248	
	PN100	265	97,2	272	
	PN160	265	97,2	292	
DN150	PN16	285	146,3	237	
	PN40 ①	300	146,3	277	
	PN63	345	146,3	317	
	PN100	355	146,3	357	
	PN160	355	146,3	383	
DN200	PN16	340	193,7	302	
	PN25	360	193,7	338	
	PN40	375	193,7	354	
	PN63	415	193,7	398	
	PN100	430	193,7	438	
	PN160	430	193,7	458	
DN250	PN16	405	242,9	318	
	PN25	425	242,9	354	
	PN40	450	242,9	388	
	PN63	470	242,9	428	
	PN100	505	242,9	492	
DN300	PN16	460	288,9	359	
	PN25	485	288,9	387	
	PN40	515	288,9	433	
	PN63	530	288,9	483	
	PN100	585	288,9	543	

Таблица 7-1: Размеры для фланцев DIN

① Допускается использование с ответными фланцами PN25.

Номинальный диаметр	Номинальное давление фланца	Внешний диаметр	Внутренний диаметр	C (RF)	C (RTJ)	
		[дюйм]				
3/4"	Класс 150	3,88	0,74	6,56	-	
	Класс 300	4,62	0,74	6,94	7,32	
	Класс 600	4,62	0,74	7,44	7,44	
	Класс 900	5,12	0,74	8,44	8,44	
	Класс 1500	5,12	0,74	8,44	8,44	
1"	Класс 150	4,25	0,96	6,80	7,18	
	Класс 300	4,88	0,96	7,32	7,70	
	Класс 600	4,88	0,96	7,82	7,82	
	Класс 900	5,88	0,96	8,70	8,70	
	Класс 1500	5,88	0,96	8,70	8,70	

Номинальный диаметр	Номинальное давление фланца	Внешний диаметр	Внутренний диаметр	C (RF)	C (RTJ)
		[дюйм]			
1 1/2"	Класс 150	4,62	1,50	7,32	7,70
	Класс 300	6,12	1,50	7,82	8,20
	Класс 600	6,12	1,50	8,44	8,44
	Класс 900	7,00	1,50	9,44	9,44
	Класс 1500	7,00	1,50	9,44	9,44
2"	Класс 150	6,00	1,94	7,75	8,13
	Класс 300	6,50	1,94	8,25	8,75
	Класс 600	6,50	1,94	9,01	9,13
	Класс 900	8,50	1,94	11,25	11,37
	Класс 1500	8,50	1,69	11,25	11,37
3"	Класс 150	7,50	2,87	8,88	9,26
	Класс 300	8,25	2,87	9,62	10,12
	Класс 600	8,25	2,87	10,38	10,50
	Класс 900	9,50	2,87	11,88	12,00
	Класс 1500	10,50	2,63	13,12	13,25
4"	Класс 150	9,00	3,83	9,62	10,00
	Класс 300	10,00	3,83	10,38	10,88
	Класс 600	10,75	3,83	12,12	12,24
	Класс 900	11,50	3,83	13,12	13,24
	Класс 1500	12,25	3,44	13,88	14,00
6"	Класс 150	11,00	5,76	12,00	12,38
	Класс 300	12,50	5,76	12,76	13,26
	Класс 600	14,00	5,76	14,74	14,86
	Класс 900	15,00	5,19	16,50	16,62
	Класс 1500	15,50	5,19	19,00	19,25
8"	Класс 150	13,50	7,63	15,00	15,38
	Класс 300	15,00	7,63	15,75	16,26
	Класс 600	16,50	7,63	18,00	18,12
	Класс 900	18,50	6,81	20,26	20,38
	Класс 1500	19,00	6,81	24,26	24,64
10"	Класс 150	16,00	9,56	15,00	15,38
	Класс 300	17,50	9,56	16,24	16,74
	Класс 600	20,00	9,56	19,50	19,62
12"	Класс 150	19,00	11,37	17,00	17,38
	Класс 300	20,50	11,37	18,24	18,74
	Класс 600	22,00	11,37	20,74	20,76

Таблица 7-2: Размеры для фланцев ANSI

Компактное исполнение - двойное измерение

Вид сбоку

Размер	[мм / дюйм]
А	305 / 12,0
В	508 / 20,0

Таблица 7-3: Габаритные размеры в мм и дюймах

Раздельное исполнение - преобразователь сигналов и монтажная стойка

Вид спереди

Вид сбоку

	а	b	с	d	е	f	g
ММ	69,9	99	46	318	140	96	154
дюйм	2,75	3,9	1,8	12,5	5,5	3,8	6,1

Таблица 7-4: Габаритные размеры в мм и дюймах

Раздельное исполнение - первичный преобразователь

Стандартное исполнение

А = 297 мм / 11,7"

Номинальный диаметр	Номинальное давление фланца	Номинальное Внешний диаметр Внутренний диаметр						
			[мм]					
DN15	PN40 ①	95	18,8	138				
	PN100	105	18,8	152				
DN25	PN40 ①	115	24,3	142				
	PN100	140	24,3	178				
	PN160	140	24,3	178				
DN40	PN40 ①	150	38,1	152				
	PN100	170	38,1	186				
	PN160	170	38,1	190				
DN50	PN40 ①	165	49,2	166				
	PN63	180	49,2	194				
	PN100	195	49,2	206				
	PN160	195	49,2	220				
DN80	PN40 ①	200	72,9	202				
	PN63	215	72,9	230				
	PN100	230	72,9	242				
	PN160	230	72,9	258				
DN100	PN40 ①	235	97,2	222				
	PN63	250	97,2	248				
	PN100	265	97,2	272				
	PN160	265	97,2	292				

Номинальный диаметр	Номинальное давление фланца	Номинальное Внешний диаметр Внутренний диаметр						
			[мм]					
DN150	PN16	285	146,3	237				
	PN40 ①	300	146,3	277				
	PN63	345	146,3	317				
	PN100	355	146,3	357				
	PN160	355	146,3	383				
DN200	PN16	340	193,7	302				
	PN25	360	193,7	338				
	PN40	375	193,7	354				
	PN63	415	193,7	398				
	PN100	430	193,7	438				
	PN160	430	193,7	458				
DN250	PN16	405	242,9	318				
	PN25	425	242,9	354				
	PN40	450	242,9	388				
	PN63	470	242,9	428				
	PN100	505	242,9	492				
DN300	PN16	460	288,9	359				
	PN25	485	288,9	387				
	PN40	515	288,9	433				
	PN63	530	288,9	483				
	PN100	585	288,9	543				

Таблица 7-5: Размеры для фланцев DIN

① Допускается использование с ответными фланцами PN25.

Номинальный диаметр	Номинальное давление	Внешний диаметр	Внутренний диаметр	C (RF)	C (RTJ)						
	фланца	[дюйм]									
3/4"	Класс 150	3,88	0,74	6,56	-						
	Класс 300	4,62	0,74	6,94							
	Класс 600	4,62	0,74	7,44	7,44						
	Класс 900	5,12	0,74	8,44	8,44						
	Класс 1500	5,12	0,74	8,44	8,44						
1"	Класс 150	4,25	0,96	6,80	7,18						
	Класс 300	4,88	0,96	7,32	7,70						
	Класс 600	4,88	0,96	7,82	7,82						
	Класс 900	5,88	0,96	8,70	8,70						
	Класс 1500	5,88	0,96	8,70	8,70						

Номинальный диаметр	Номинальное давление	Внешний диаметр	Внутренний диаметр	C (RF)	C (RTJ)		
	фланца		[д:	ойм]			
1 1/2"	Класс 150	4,62	1,50	7,32	7,70		
	Класс 300	6,12	1,50	7,82	8,20		
	Класс 600	6,12	1,50	8,44	8,44		
	Класс 900	7,00	1,50	9,44	9,44		
	Класс 1500	7,00	1,50	9,44	9,44		
2"	Класс 150	6,00	1,94	7,75	8,13		
	Класс 300	6,50	1,94	8,25	8,75		
	Класс 600	6,50	1,94	9,01	9,13		
	Класс 900	8,50	1,94	11,25	11,37		
	Класс 1500	8,50	1,69	11,25	11,37		
3"	Класс 150	7,50	2,87	8,88	9,26		
	Класс 300	8,25	2,87	9,62	10,12		
	Класс 600	8,25	2,87	10,38	10,50		
	Класс 900	9,50	2,87	11,88	12,00		
	Класс 1500	10,50	2,63	13,12	13,25		
4"	Класс 150	9,00	3,83	9,62	10,00		
	Класс 300	10,00	3,83	10,38	10,88		
	Класс 600	10,75	3,83	12,12	12,24		
	Класс 900	11,50	3,83	13,12	13,24		
	Класс 1500	12,25	3,44	13,88	14,00		
6"	Класс 150	11,00	5,76	12,00	12,38		
	Класс 300	12,50	5,76	12,76	13,26		
	Класс 600	14,00	5,76	14,74	14,86		
	Класс 900	15,00	5,19	16,50	16,62		
	Класс 1500	15,50	5,19	19,00	19,25		
8"	Класс 150	13,50	7,63	15,00	15,38		
	Класс 300	15,00	7,63	15,75	16,26		
	Класс 600	16,50	7,63	18,00	18,12		
	Класс 900	18,50	6,81	20,26	20,38		
	Класс 1500	19,00	6,81	24,26	24,64		
10"	Класс 150	16,00	9,56	15,00	15,38		
	Класс 300	17,50	9,56	16,24	16,74		
	Класс 600	20,00	9,56	19,50	19,62		
12"	Класс 150	19,00	11,37	17,00	17,38		
	Класс 300	20,50	11,37	18,24	18,74		
	Класс 600	22,00	11,37	20,74	20,76		

Таблица 7-6: Размеры для фланцев ANSI

Раздельное исполнение - двойное измерение

Вид сбоку

Вид спереди

Размер	[мм / дюйм]
А	290 / 11,4
В	508 / 20,0

Таблица 7-7: Габаритные размеры в мм и дюймах

7.3.2 Размеры сэндвич-исполнения

Компактное исполнение

Стандартное исполнение (вид спереди и вид сбоку)

1 = 96 мм / 3,8"

(2) = 124 мм / 4,9" (3) = 154 мм / 6,1"

При использовании цифрового дисплея, доступна увеличенная крышка

Номинальный диаметр	Внешний диаметр	Внутренний диаметр	С										
[мм / дюйм]													
15 / 3/4	57,2 / 2,25	18,8 / 0,74	79,5 / 3,13										
25 / 1	66,8 / 2,63	24,3 / 0,96	79,5 / 3,13										
40 / 1 1/2	85,9 / 3,38	38,1 / 1,50	79,5 / 3,13										
50 / 2	104,6 / 4,12	49,2 / 1,94	79,5 / 3,13										
80 / 3	136,7 / 5,38	72,9 / 2,87	95,3 / 3,75										
100 / 4	174,5 / 6,87	96,7 / 3,81	120,7 / 4,75										
150 / 6	222,3 / 8,75	147,3 / 5,80	177,8 / 7,00										
200 / 8	279,4 / 11,00	193,0 / 7,60	228,6 / 9,00										

Таблица 7-8: Габаритные размеры в мм и дюймах

Информация!

Корпус расходомера устанавливают между фланцами с выступающей уплотнительной поверхностью по ANSI класса 150, 300, или 600 и PN16, 40, 63, и 100.

Раздельное исполнение - преобразователь сигналов и монтажная стойка

	а	b	с	d	е	f	g
MM	69,9	99	46	318	140	96	154
дюйм	2,75	3,9	1,8	12,5	5,5	3,8	6,1

Таблица 7-9: Габаритные размеры в мм и дюймах

Раздельное исполнение - первичный преобразователь

Стандартное исполнение

Номинальный диаметр	Внешний диаметр	Внутренний диаметр	С												
	[мм / дюйм]														
15 / 3/4	57,2 / 2,25	18,8 / 0,74	79,5 / 3,13												
25 / 1	66,8 / 2,63	24,3 / 0,96	79,5 / 3,13												
40 / 1 1/2	85,9 / 3,38	38,1 / 1,50	79,5 / 3,13												
50 / 2	104,6 / 4,12	49,2 / 1,94	79,5 / 3,13												
80 / 3	136,7 / 5,38	72,9 / 2,87	95,3 / 3,75												
100 / 4	174,5 / 6,87	96,7 / 3,81	120,7 / 4,75												
150 / 6	222,3 / 8,75	147,3 / 5,80	177,8 / 7,00												
200 / 8	279,4 / 11,00	193,0 / 7,60	228,6 / 9,00												

Таблица 7-10: Габаритные размеры в мм и дюймах

7.3.3 Bec

Номинальный диаметр		Вес (прибл.)						
[мм]	[дюйм]	[кг]	[фунт]					
DN15	3/4	2,8	6					
DN25	1	3,2	7					
DN40	1 1/2	3,7	8					
DN50	2	5,0	11					
DN80	3	8,5	19					
DN100	4	12,0	26					
DN150	6	16,5	36					
DN200	8	27,5	61					

Таблица 7-11: Вес прибора сэндвич-исполнения в кг и фунтах

Корпус электроники весит приблизительно 2 кг / 4 фунта, вес варьируется в зависимости от используемого индикатора/конфигуратора, и/или увеличенной крышки корпуса.

Фланцы DIN				Фланцы ANS	I						
Номин. диаметр	Номин. давление фланца	Вес [кг]	Вес [фунт]	Номин. диаметр	Номин. давление фланца	Вес [кг]	Вес [фунт]				
DN15	PN40	6,08	13,3	3/4"	Класс 150	5,21	11,4				
DN15	PN100	7,85	17,2	3/4"	Класс 1500	9,25	20,3				
DN25	PN40	6,58	14,4	1"	Класс 150	6,03	13,2				
DN25	PN160	9,26	20,1	1"	Класс 1500	11,52	25,3				
DN40	PN40	8,62	18,9	1 1/2"	Класс 150	8,07	17,7				
DN40	PN160	13,29	29,2	1 1/2"	Класс 1500	16,15	35,5				
DN50	PN40	10,34	22,7	2"	Класс 150	9,98	21,9				
DN50	PN160	17,92	39,4	2"	Класс 1500	25,08	55,2				
DN80	PN40	15,60	34,3	3"	Класс 150	20,00	44,0				
DN80	PN160	27,08	59,6	3"	Класс 1500	50,26	110,7				
DN100	PN40	20,64	45,4	4"	Класс 150	21,55	47,4				
DN100	PN160	37,33	82,2	4"	Класс 1500	71,22	156,9				
DN150	PN16	28,39	62,5	6"	Класс 150	35,7	78,6				
DN150	PN160	89,32	196,8	6"	Класс 1500	162,43	358,0				
DN200	PN16	43,5	95,8	8"	Класс 150	58,24	128,3				
DN200	PN160	162,29	357,7	8"	Класс 600	131,76	290,4				
DN250	PN16	65,63	144,6	8"	Класс 1500	298,6	658,3				
DN250	PN100	191,73	422,6	10"	Класс 150	73,07	161,0				
DN300	PN16	93,21	205,4	10"	Класс 600	216,5	477,2				
DN300	PN100	280,82	619,0	12" Класс 150		114,98	253,4				
				12"	Класс 600	245,62	241,4				

Таблица 7-12: Вес прибора фланцевого исполнения в кг и фунтах

7.4 Номинальные значения давления и температуры для фланцев

Номинальное значение фланцев ANSI согласно ASME B16.5 для материалов группы 2.2

Рисунок 7-1: Номинальное значение фланцев ANSI согласно ASME B16.5 для материалов группы 2.2

X: Рабочая температура, °F Y: Рабочее давление, фунт/кв.дюйм изб.

- -
- Класс 150
 Класс 300
- ③ Класс 600

Номинальное значение фланцев ANSI согласно ASME B16.5 для материалов группы 2.1

Рисунок 7-2: Номинальное значение фланцев ANSI согласно ASME B16.5 для материалов группы 2.1

Х: Рабочая температура, °F

Y: Рабочее давление, фунт/кв.дюйм изб.

① Класс 150

② Класс 300

③ Класс 600

Номинальное значение фланцев DIN согласно EN 1092-1 для материалов группы 14E0

Рисунок 7-3: Номинальное значение фланцев DIN согласно EN 1092-1 для материалов группы 14E0

Х: Рабочая температура, °С

Y: Рабочее давление, бар

① PN16

2 PN40

③ PN63

④ PN100

Номинальное значение фланцев DIN согласно EN 1092-1 для материалов группы 10E0

Рисунок 7-4: Номинальное значение фланцев DIN согласно EN 1092-1 для материалов группы 10E0

Х: Рабочая температура, °С

Ү: Рабочее давление, бар

① PN16

② PN40

③ PN63

④ PN100

 		-										 			

		-													
		-		 			 			-		 		 	
-		 		 			 			 		 			
L															

КРОНЕ-Автоматика

Самарская область, Волжский район, поселок Верхняя Подстепновка, дом 2 Тел.: +7 (846) 230 03 70 Факс: +7 (846) 230 03 11 kar@krohne.su

КРОНЕ Инжиниринг

Самарская область, Волжский район, поселок Верхняя Подстепновка, дом 2 Почтовый адрес: Россия, 443065, г. Самара, Долотный пер., 11, а/я 12799 Тел.: +7 (846) 230 04 70 Факс: +7 (846) 230 03 13 samara@krohne.su

115280, г. Москва,

ул. Ленинская Слобода, 26 Бизнес-центр «Омега-2» Тел.: +7 (499) 967 77 99 Факс: +7 (499) 519 61 90 moscow@krohne.su

195196, г. Санкт-Петербург, ул. Громова, 4, оф. 257 Бизнес-центр «ГРОМОВЪ» Тел.: +7 (812) 242 60 62 Факс: +7 (812) 242 60 66 peterburg@krohne.su

350072, г. Краснодар, ул. Московская, 59/1, оф. 9-02 БЦ «Девелопмент-Юг» Тел.: +7 (861) 201 93 35 Факс: +7 (499) 519 61 90 krasnodar@krohne.su 453261, Республика Башкортостан, г. Салават, ул. Ленина, 3, оф. 302 Тел.: +7 (3476) 385 570 salavat@krohne.su

664007, г. Иркутск, ул. Партизанская, 49, оф. 72 Тел.: +7 (3952) 798 595 Тел. / Факс: +7 (3952) 798 596 irkutsk@krohne.su

660098, г. Красноярск, ул. Алексеева, 17, оф. 380 Тел.: +7 (391) 263 69 73 Факс: +7 (391) 263 69 74 krasnoyarsk@krohne.su

625013, г. Тюмень, ул. Пермякова, 1, стр. 5, оф. 1005 Тел.: +7 (345) 265 87 44 tyumen@krohne.su

680030 г. Хабаровск ул. Постышева, д. 22А, оф. 812 Тел.: +7 (4212) 306 939 Факс: +7 (4212) 318 780 habarovsk@krohne.su

150040, г. Ярославль, ул. Победы, 37, оф. 401 Бизнес-центр «Североход» Тел.: +7 (4852) 593 003 Факс: +7 (4852) 594 003 yaroslavl@krohne.su

Единая сервисная служба Тел.: 8 (800) 505 25 87 service@krohne.su

КРОНЕ Беларусь

220045, г. Минск, пр-т Дзержинского, 131-622 Тел.: +375 (17) 388 94 80 Факс: +375 (17) 388 94 81 minsk@krohne.su

230025, г. Гродно, ул. Молодёжная, 3, оф. 10 Тел.: +375 (152) 71 45 01 Тел.: +375 (152) 71 45 02 grodno@krohne.su

211440, г. Новополоцк, ул. Юбилейная, 2a, оф. 310 Тел. / Факс: +375 (214) 522 501 novopolotsk@krohne.su

КРОНЕ Казахстан

050020, г. Алматы, пр-т Достык, 290 а Тел.: +7 (727) 356 27 70 Факс: +7 (727) 356 27 71 almaty@krohne.su

КРОНЕ Украина

03040, г. Киев, ул. Васильковская, 1, оф. 201 Тел.: +380 (44) 490 26 83 Факс: +380 (44) 490 26 84 krohne@krohne.kiev.ua

КРОНЕ Армения, Грузия

0023, г. Ереван, ул. Севана, 12 Тел. / Факс: +374 (99) 929 911 Тел. / Факс: +374 (94) 191 504 yerevan@krohne.com

КРОНЕ Узбекистан

100015, г. Ташкент, ул. Ойбек, 18, БЦ Атриум, 4 этаж Тел.: +998974547721 tashkent@krohne.su

